Math, asked by anupriyasrivastava00, 3 months ago

yp^2+(x-y)p-x=0 solve the following differential equations

Answers

Answered by lalitgumber1128
3

Answer:

yP^2 + ( x - y ) P - x = 0

Step-by-step explanation:

discriminant = b²-4ac

D = ( x - y )^2 - 4(y)(-x)

D = x^2 + y^2 -

D = x^2 + y^2 + 2xy

D = ( x + y )^2

discriminant \:  =  \:  {b}^{2}  - 4ac

root \:  =  \frac{ - b \:  +  - \:  \sqrt{d} }{2a}

 =  \frac{ - (x - y) \:  +  -  \sqrt{ {(x + y)}^{2} } }{2y}

=  \frac{ - x + y + x + y}{2y}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - x + y - x - y}{2y}

=  \frac{2y}{2y}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 2x}{ \:  \: 2y}

1 , -(x/y)

First root is 1

Second root is -x/y

Similar questions