Math, asked by educationmaster37, 10 months ago

yrr jisko aata h wohi krna plz glt answer Mt krna ​

Attachments:

Answers

Answered by TheMoonlìghtPhoenix
3

Step-by-step explanation:

SEE THE ATTACHMENT........

HOPE IT HELPS AND PLZ MARK IT AS BRAINLIEST AND FOLLOW ME PLZ......

Attachments:
Answered by Anonymous
14

\underline{\bigstar\:\textsf{According \: to \: given \: in \: question:}}

\normalsize\:\bullet\:\sf\ According \: to \: the \: division \: algorithm, \: if \: P(x) \: and \: g(x) \\ \normalsize\sf\ are \: two \: polynomial \: with \: g(x) = 0, \: then \: we \: can \: find \\ \normalsize\sf\ P(x) \: and \: r(x) \: such \: that \: P(x) = g(x) \times\ q(x) + r(x) \\ \normalsize\sf\ [where \: r(x) = 0].

\normalsize\sf\:\bullet\ Degree \: of \: polynomial \: is \: the \: highest \: power \\ \normalsize\sf\ of \: the \: variable \: in \: the \: polynomial.

 \rule{100}1

AnswEr 1 :

\:\bullet\:\sf\ Degree \: of \: quotient \: will \: be \: equal \: to \: Degree \\ \normalsize\sf\ of \: dividend \: when \: divisor \: is \: constant \\  \normalsize\sf\ [i.e. - when \:  p(x) \: is \: divided \: by \: constant].

\normalsize\sf\ Let \: us \: assume \: division \: of \: 6x^2 + 2x + 2 \: by \: 2

\normalsize\dashrightarrow\sf\ P(x) = 6x^2 + 2x + 2 \\ \\ \normalsize\dashrightarrow\sf\ g(x) = 2 \\ \\ \normalsize\dashrightarrow\sf\ q(x) = 3x^2 + x + 1 \\ \\ \normalsize\dashrightarrow\sf\ r(x) = 0

\normalsize\sf\ Here, \: deg \: p(x) = deg \: q(x) \:  [i.e. 2]

\scriptsize\sf{\: \: \: \: \: \: \: \: \: \dag\ \: Checking \: for \: division \: algorithm}

\normalsize\dashrightarrow\sf\ P(x) = g(x) \times\ q(x) + r(x)

\normalsize\dashrightarrow\sf\ 6x^2 + 2x + 2 = 2[ 3x^2 + x + 1 + 0 ]

\normalsize\dashrightarrow\sf\ 6x^2 + 2x + 2 = 2[ 3x^2 + x + 1]

\normalsize\dashrightarrow\sf\ 6x^2 + 2x + 2 = 6x^2 + 2x + 2

\normalsize\dashrightarrow\sf\ Hence, \: algorithm \: verified \: !!

 \rule{100}1

AnswEr 2 :

\normalsize\sf\ Let \: us \: assume \: the \: division \: of \: x^3 + x \: by \: x^2

\normalsize\dashrightarrow\sf\ P(x) = x^3 + x \\ \\ \normalsize\dashrightarrow\sf\ g(x) = x^2  \\ \\ \normalsize\dashrightarrow\sf\ q(x) =  x \\ \\ \normalsize\dashrightarrow\sf\ r(x) = x

\normalsize\sf\ Here, \: deg \: q(x) = deg \: r(x) \: [i.e. \: 1]

\scriptsize\sf{\: \: \: \: \: \: \: \: \: \dag\ \: Checking \: for \: division \: algorithm}

\normalsize\dashrightarrow\sf\ P(x) = g(x) \times\ q(x) + r(x)

\normalsize\dashrightarrow\sf\ x^3 + x  = x^2[ x ] + x

\normalsize\dashrightarrow\sf\ x^3 + x  = x^3 + x

\normalsize\dashrightarrow\sf\ Hence, \: algorithm \: verified \: !!

 \rule{100}1

AnswEr 3 :

\normalsize\sf\ Degree \: of \: remainder \: will \: be \: 0 \: when \\ \normalsize\sf\ remainder \: comes\: to \: a \: constant

\normalsize\sf\ Let \: us \: assume \: the \: division \: of \: x^3 + 1  \: by \: x^2

\normalsize\dashrightarrow\sf\ P(x) = x^3 + 1 \\ \\ \normalsize\dashrightarrow\sf\ g(x) = x^2  \\ \\ \normalsize\dashrightarrow\sf\ q(x) =  x  \\ \\ \normalsize\dashrightarrow\sf\ r(x) = 1

\normalsize\sf\ Here, \: deg \: r(x) = 0

\scriptsize\sf{\: \: \: \: \: \: \: \: \: \dag\ \: Checking \: for \: division \: algorithm}

\normalsize\dashrightarrow\sf\ P(x) = g(x) \times\ q(x) + r(x)

\normalsize\dashrightarrow\sf\ x^3 + 1 = x^2[ x ] + 1

\normalsize\dashrightarrow\sf\ x^3 + 1  = x^3 + 1

\normalsize\dashrightarrow\sf\ Hence, \: algorithm \: verified \: !!

Similar questions