Math, asked by atulkumarsahoo500, 2 months ago

yy'=x^3+y^2/x,y(2)=6 find the initial value solution of the differential equations.​

Answers

Answered by senboni123456
7

Step-by-step explanation:

We have,

 \tt{y \cdot y^{ \prime}  =  \dfrac{ {x}^{3}  +  {y}^{2}  }{x} }

 \tt{ \implies\dfrac{dy}{dx} =  \dfrac{ {x}^{3}  +  {y}^{2}  }{xy} }

 \tt{ \implies\dfrac{dy}{dx} =  \dfrac{ {x}^{2}  }{y}  +  \dfrac{ y }{x} }

 \tt{ \implies\dfrac{dy}{dx}  -\dfrac{ y }{x} =  \dfrac{ {x}^{2}  }{y}   }

 \tt{ \implies \: y\dfrac{dy}{dx}  -\dfrac{ {y}^{2} }{x} =   {x}^{2}     }

 \bf{Put \:  \:  \: y^{2} = v }

 \bf{ \implies \: 2y \dfrac{dy}{dx}  =  \dfrac{dv}{dx} }

 \bf{ \implies \: y \dfrac{dy}{dx}  =  \dfrac{1}{2} \cdot \dfrac{dv}{dx} }

So,

 \tt{ \implies \:  \dfrac{1}{2} \cdot\dfrac{dv}{dx}  -\dfrac{v }{x} =   {x}^{2}     }

 \tt{ \implies \:  \dfrac{dv}{dx}  -\dfrac{2v }{x} =  2 {x}^{2}     }

This is linear form, so,

  \displaystyle\bf{ I.F. =   {e}^{ \displaystyle \bf{ - \int \dfrac{2}{x} \: dx}} }

  \displaystyle \implies\bf{ I.F. =   {e}^{ \displaystyle \bf{ - 2\int \dfrac{dx}{x} }} }

  \displaystyle \implies\bf{ I.F. =   {e}^{ \displaystyle \bf{ - 2 \ln | x |  }} }

  \displaystyle \implies\bf{ I.F. =   {e}^{ \displaystyle \bf{  \ln | x |^{ - 2}   }} }

  \displaystyle \implies\bf{ I.F. =    \dfrac{1}{ x ^{  2}}   }

So, our solution is

  \displaystyle\tt{v \cdot \dfrac{1}{ {x}^{2} } =  \int2 {x}^{2}  \cdot  \dfrac{1}{ {x}^{2} }  \: dx  }

  \displaystyle\tt{ \implies \dfrac{v}{ {x}^{2} } =  \int2  \: dx  }

  \displaystyle\tt{ \implies \dfrac{v}{ {x}^{2} } =  2\int  \: dx  }

\tt{ \implies \dfrac{v}{ {x}^{2} } =  2x + c  }

Put the value of v,

\tt{ \implies \dfrac{ {y}^{2} }{ {x}^{2} } =  2x + c  }

Since y(2) = 6,

So,

\tt{ \implies \dfrac{(6)^{2} }{ (2)^{2} } =  2(2) + c  }

\tt{ \implies \dfrac{36}{ 4} =  4 + c  }

\tt{ \implies 9 - 4 =  c  }

\tt{ \implies   c  = 5 }

So, required solution,

\tt{ \implies \dfrac{ {y}^{2} }{ {x}^{2} } =  2x + 5  }

 \implies \boxed{\tt{  {y}^{2} =  2x^{3}  + 5 {x}^{2}   }}

Similar questions