Math, asked by iandu7050, 11 months ago

Yzp^2-q=0 solve by charpit method

Answers

Answered by Swarup1998
5

Given: yzp^{2}-q=0

To find:

  • solution by Charpit's method

Solution:

Here the given equation is

\quad F(x,y,z,p,q)=yzp^{2}-q=0 .....(1)

∴ Charpit's auxiliary equations are

\dfrac{dp}{\frac{\partial F}{\partial x}+p\frac{\partial F}{\partial z}}=\dfrac{dq}{\frac{\partial F}{\partial y}+q\frac{\partial F}{\partial z}}=\dfrac{dz}{-p\frac{\partial F}{\partial p}-q\frac{\partial F}{\partial q}}\\=\dfrac{dx}{-\frac{\partial F}{\partial p}}=\dfrac{dy}{-\frac{\partial F}{\partial q}}

\Rightarrow \dfrac{dp}{0+p.yq^{2}}=\dfrac{dq}{zp^{2}+q.yp^{2}}\\=\dfrac{dz}{-p.2yzp-q.(-1)}=\dfrac{dx}{-2yzp}=\dfrac{dy}{-1}

\Rightarrow \dfrac{dp}{yp^{3}}=\dfrac{dq}{zp^{2}+yp^{2}q}=\dfrac{dz}{-2yzp^{2}+q}\\=\dfrac{dx}{-2yzp}=\dfrac{dy}{1}

Taking the first and the last fractions, we get

\quad \dfrac{dp}{yp^{3}}=\dfrac{dy}{1}

\Rightarrow \dfrac{dp}{p^{3}}=ydy

Integrating we get

\quad \int \dfrac{dp}{p^{3}}=\int ydy

\Rightarrow -\dfrac{1}{2p^{2}}=\dfrac{y^{2}}{2}-\dfrac{c^{2}}{2}

where c is constant of integration

\Rightarrow \dfrac{1}{p^{2}}=c^{2}-y^{2}

\Rightarrow p^{2}=\dfrac{1}{c^{2}-y^{2}}

\Rightarrow \boxed{p=\dfrac{1}{\sqrt{c^{2}-y^{2}}}}

Then \boxed{q=\dfrac{yz}{c^{2}-y^{2}}} by (1)

Substituting the values of p and q in

\quad dz=pdx+qdy, we get

\quad dz=\dfrac{1}{\sqrt{c^{2}-y^{2}}}+\dfrac{yz}{\sqrt{c^{2}-y^{2}}}dy

\Rightarrow dz=\dfrac{1}{\sqrt{c^{2}-y^{2}}}[dx+\dfrac{yzdy}{\sqrt{c^{2}-y^{2}}}

\Rightarrow \sqrt{c^{2}-y^{2}}dz=dx+\dfrac{yzdy}{\sqrt{c^{2}-y^{2}}}

\Rightarrow \sqrt{c^{2}-y^{2}}dz-\dfrac{yzdy}{\sqrt{c^{2}-y^{2}}}=dx .....(2)

Let \sqrt{c^{2}-y^{2}}z=t so that

\quad \sqrt{c^{2}-y^{2}}dz-\dfrac{yzdy}{\sqrt{c^{2}-y^{2}}}=dt

Continuing (2), we get

\quad dt=dx

\Rightarrow t=x+k ( by integration )

where k is constant of integration

\Rightarrow \sqrt{a^{2}-y^{2}}z=x+k

Squaring we get

\quad (a^{2}-y^{2})z^{2}=(x+k)^{2}

This is the required solution.

Read more on Brainly.in

Question. Solve by Charpit's method:

\quad\quad px+qy=z\sqrt{1+pq}

- https://brainly.in/question/15155312

Similar questions