Math, asked by thoratarya02, 23 days ago

Z =1/1+i
Express in polax and Exponential form​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:z = \dfrac{1}{1 + i}

\rm :\longmapsto\:z = \dfrac{1}{1 + i} \times \dfrac{1 - i}{1 - i}

\rm :\longmapsto\:z = \dfrac{1 - i}{ {1}^{2}  -  {i}^{2} }

\rm :\longmapsto\:z = \dfrac{1 - i}{1 + 1}  \:  \:  \:  \:  \{ \:  {i}^{2}  =  - 1 \:  \}

\rm :\longmapsto\:z = \dfrac{1 - i}{2}

\bf\implies \:z = \dfrac{1}{2} \:  - \: \dfrac{1}{2} i

Let assume that

\rm :\longmapsto\:\dfrac{1}{2}  - \dfrac{1}{2} i = r(cosx + isinx) -  -  - (1)

\rm :\longmapsto\:\dfrac{1}{2}  - \dfrac{1}{2} i = rcosx + irsinx

On comparing real and Imaginary parts we get

\rm :\longmapsto\:rcosx =  \dfrac{1}{2}  -  -  - (2)

and

\rm :\longmapsto\:rsinx =   - \dfrac{1}{2}  -  -  - (3)

Squaring equation (2) and (3) and add, we get

\rm :\longmapsto\: {r}^{2} {cos}^{2}x +  {r}^{2} {sin}^{2}x =  \dfrac{1}{4} +  \dfrac{1}{4}

\rm :\longmapsto\: {r}^{2} ({cos}^{2}x +  {sin}^{2}x) =  \dfrac{2}{4}

\rm :\longmapsto\: {r}^{2}  =  \dfrac{1}{2}

\bf\implies \:r =  \dfrac{1}{ \sqrt{2} }  -  -  - (4)

On substituting (4) in equation (2) and (3), we get

\rm :\longmapsto\:cosx = \dfrac{1}{ \sqrt{2} }  \:  \: and \:  \: sinx =  -  \: \dfrac{1}{ \sqrt{2} }

We know, sinx < 0 and cosx > 0 in fourth quadrant.

\bf\implies \:x =  -  \: \dfrac{\pi}{4}

So, we have

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &amp;\sf{r = \dfrac{1}{ \sqrt{2} } }  \\ \\ &amp;\sf{x =  -  \: \dfrac{\pi}{4} } \end{cases}\end{gathered}\end{gathered}

Hence, Equation (1) become

 \red{\rm :\longmapsto\:\dfrac{1}{2}  - \dfrac{1}{2} i = \dfrac{1}{ \sqrt{2} } \bigg(cos\bigg[ - \dfrac{\pi}{4} \bigg] + isin\bigg[ - \dfrac{\pi}{4} \bigg]\bigg)}

is the required polar form.

We know,

Exponential form is

\rm :\longmapsto\:\boxed{ \tt{ \: r(cosx + i \: sinx) = r {e}^{ix}  \: }}

So, Exponential form is

 \red{\rm :\longmapsto\:\dfrac{1}{2}  - \dfrac{1}{2} i = \dfrac{1}{ \sqrt{2} }  {\bigg(e\bigg)}^{ -i \dfrac{\pi}{4} } }

Hence,

\rm :\longmapsto\:z = \dfrac{1}{1 + i}  = \dfrac{1}{ \sqrt{2} } \bigg(cos\bigg[ - \dfrac{\pi}{4} \bigg] + isin\bigg[ - \dfrac{\pi}{4} \bigg]\bigg)

and

\rm :\longmapsto\:z = \dfrac{1}{1 + i}  =  \dfrac{1}{ \sqrt{2} }  {\bigg(e\bigg)}^{ -i \dfrac{\pi}{4} }

Answered by guptaananya2005
0

Answer:

 \\  \\ </p><p></p><p>\rm :\longmapsto\:z = \dfrac{1}{1 + i} = \dfrac{1}{ \sqrt{2} } \bigg(cos\bigg[ - \dfrac{\pi}{4} \bigg] + isin\bigg[ - \dfrac{\pi}{4} \bigg]\bigg) \\ </p><p></p><p> \\  \\ and \\  \\ </p><p></p><p>\rm :\longmapsto\:z = \dfrac{1}{1 + i} = \dfrac{1}{ \sqrt{2} } {\bigg(e\bigg)}^{ -i \dfrac{\pi}{4} }</p><p></p><p>

Step-by-step explanation:

Hope it helps you

Similar questions