Math, asked by anitharamalingaiah, 6 months ago

Z= (1-i)^4
pls can u guys give me this answer pls ​

Answers

Answered by Asterinn
2

\large\bf  \implies  \large\bf z =  {(1 - i)}^{4}

Where i = √-1

\implies \sf z =  {(1 - i)}^{2} {(1 - i)}^{2}

We know that :-

\underline{\boxed{ \large\bf{   {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab}}}

\sf\implies  z =  ({1}^{2}  +  {i}^{2}  - 2i) ({1}^{2}  +  {i}^{2}  - 2i)

\sf\implies  z =  ({1}  +  {i}^{2}  - 2i) ({1}  +  {i}^{2}  - 2i)

We know that :-

\underline{\boxed{ \large\bf{  {i}^{2}  =  - 1}}}

\sf\implies  z =  ({1}  - 1  - 2i) ({1}   - 1 - 2i) \div

\sf\implies  z =  (0  - 2i) (0- 2i)

\sf\implies  z =   {(- 2i)}^{2}

\sf\implies  z =   4 \times ( - 1)

\sf\implies  z =    - 4

Answer : -4

Similar questions