Math, asked by sakshi5064, 2 months ago

Z = -1 + i expressed in polar form is​

Answers

Answered by Anonymous
39

 \large \sf \maltese \:  \:  \:  \underline{ \underline{Question \:  : }}

  • Polar form of z = -1 + i [ i = -1 ]

Polar Form

 \bf\bull \:  \:  \:  \: Z = r \bigg( \cos( \phi)  + i \sin( \phi)  \bigg)

let's do it

 \large \sf \maltese \:  \:  \:  \underline{ \underline{Solution\:  : }}

 \bull \sf \:  \:  \:  \:  \:  Z = -1 + i \\

 \sf \dashrightarrow Z =  | Z |  \bigg( \cos \big( \arg(z) \big) +i  \: \sin \big( \arg(z) \big) \bigg)

\sf \dashrightarrow Z =   \sqrt{2}   \bigg( \cos \big(  { \tan}^{ - 1} ( -1 ) \big) +i  \: \sin \big({ \tan}^{ - 1} ( -1 )   \big) \bigg)

\sf \dashrightarrow{ { \sf { \underline{ \boxed{ \mathfrak{Z =   \sqrt{2}  \bigg( \cos( \frac{\pi}{4} )  + i \sin( \frac{\pi}{4} )  \bigg)}}}}}}

Similar questions