Math, asked by aftabkhanali30, 2 months ago

z=1-i find the imaginary part of z^6

Answers

Answered by sachin9715
0

Answer:

=1+i

=1+i 3

=1+i 36

=1+i 36 using Binomial Theorem.

=1+i 36 using Binomial Theorem.

=1+i 36 using Binomial Theorem. 2

=1+i 36 using Binomial Theorem. 2 +

=1+i 36 using Binomial Theorem. 2 + 6

=1+i 36 using Binomial Theorem. 2 + 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 +

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 +

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)−

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5 =(1−15×3+135−27)+i

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5 =(1−15×3+135−27)+i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5 =(1−15×3+135−27)+i 3

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5 =(1−15×3+135−27)+i 3 (60−60)

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5 =(1−15×3+135−27)+i 3 (60−60)=(136−72)+i

=1+i 36 using Binomial Theorem. 2 + 6 C 3 (i 3 3 + 6 C 4 4 + 6 C 5 (3)+ 6 C 4 (9)− 6 C 6 (27)+i 3 6 C 1 −3 6 C 3 +9 6 C 5 =(1−15×3+135−27)+i 3 (60−60)=(136−72)+i 3

Similar questions