Math, asked by uday94836, 1 year ago

z+1,z-1,y+17,y-17 solve it​

Answers

Answered by kothariharshkothari
4

Answer:

Step-by-step explanation:

{(z + 1)(z - 1)} {(y+ 17)(y - 17)}

(z^2 - 1^2)( y^2 - 17^2)

(z^2 - 1)(y^2 - 289)

Answered by harendrachoubay
5

The product of z + 1, z - 1, y + 17, y - 17 = (z^2 - 1)(y^2 - 289)

Step-by-step explanation:

We have,

z + 1, z - 1, y + 17, y - 17

To find, the product of z + 1, z - 1, y + 17, y - 17 = ?

z + 1, z - 1, y + 17, y - 17

= {(z + 1)(z - 1)}{(y+ 17)(y - 17)}

Using the algebraic identity,

(a + b)(a - b)=a^2-b^2

=(z^2 - 1^2)( y^2 - 17^2)

= (z^2 - 1)(y^2 - 289)

∴ The product of z + 1, z - 1, y + 17, y - 17 = (z^2 - 1)(y^2 - 289)

Thus, the product of z + 1, z - 1, y + 17, y - 17 is equal to (z^2 - 1)(y^2 - 289).

Similar questions