z +1, z - 1, y + 17, y - 17, Z
Answers
Answered by
2
Answer:
The product of z + 1, z - 1, y + 17, y - 17 = (z^2 - 1)(y^2 - 289)(z
2
−1)(y
2
−289)
Step-by-step explanation:
We have,
z + 1, z - 1, y + 17, y - 17
To find, the product of z + 1, z - 1, y + 17, y - 17 = ?
∴ z + 1, z - 1, y + 17, y - 17
= {(z + 1)(z - 1)}{(y+ 17)(y - 17)}(z+1)(z−1)(y+17)(y−17)
Using the algebraic identity,
(a + b)(a - b)=a^2-b^2(a+b)(a−b)=a
2
−b
2
=(z^2 - 1^2)( y^2 - 17^2)=(z
2
−1
2
)(y
2
−17
2
)
= (z^2 - 1)(y^2 - 289)(z
2
−1)(y
2
−289)
∴ The product of z + 1, z - 1, y + 17, y - 17 = (z^2 - 1)(y^2 - 289)(z
2
−1)(y
2
−289)
Thus, the product of z + 1, z - 1, y + 17, y - 17 is equal to (z^2 - 1)(y^2 - 289)(z
2
−1)(y
2
−289) .
Answered by
0
Answer:
Step-by-step explanation:
Similar questions
Environmental Sciences,
8 days ago
Social Sciences,
8 days ago
Science,
17 days ago
English,
17 days ago
Math,
9 months ago
Math,
9 months ago
Hindi,
9 months ago