Math, asked by tinku06chakraborty, 17 days ago

z +1, z - 1, y + 17, y - 17, Z​

Answers

Answered by sanjaylovely11100
2

Answer:

The product of z + 1, z - 1, y + 17, y - 17 = (z^2 - 1)(y^2 - 289)(z

2

−1)(y

2

−289)

Step-by-step explanation:

We have,

z + 1, z - 1, y + 17, y - 17

To find, the product of z + 1, z - 1, y + 17, y - 17 = ?

∴ z + 1, z - 1, y + 17, y - 17

= {(z + 1)(z - 1)}{(y+ 17)(y - 17)}(z+1)(z−1)(y+17)(y−17)

Using the algebraic identity,

(a + b)(a - b)=a^2-b^2(a+b)(a−b)=a

2

−b

2

=(z^2 - 1^2)( y^2 - 17^2)=(z

2

−1

2

)(y

2

−17

2

)

= (z^2 - 1)(y^2 - 289)(z

2

−1)(y

2

−289)

∴ The product of z + 1, z - 1, y + 17, y - 17 = (z^2 - 1)(y^2 - 289)(z

2

−1)(y

2

−289)

Thus, the product of z + 1, z - 1, y + 17, y - 17 is equal to (z^2 - 1)(y^2 - 289)(z

2

−1)(y

2

−289) .

Answered by ps4363840
0

Answer:

Step-by-step explanation:

Similar questions