Math, asked by georgekennethjoe007, 9 months ago

z= -16/1+i√3 find in polar form​

Answers

Answered by pooja2108
2

Answer:

z = 8 ( cos(2\pi/3)  + i sin (2\pi/3) ) or

z = 8 ( cos (120°) + i sin (120°) )

Step-by-step explanation:

Given, z = -16 / ( 1+i\sqrt{3} )

First convert it into standard form,

multiply and divide with ( 1 - i\sqrt{3} )

z = -16( 1 - i\sqrt{3} ) / ( 1 + i\sqrt{3} ) * ( 1 - i\sqrt{3} )

z = -16 + 16\sqrt{3} i / 1 - (i\sqrt{3})^2

z = -16 + 16\sqrt{3} i / 1 - ( 3i^{2})

z = -16 + 16\sqrt{3} i / 1 - (-3)

z = -16 + 16\sqrt{3} i / 4

z = -4 + 4\sqrt{3} i

compare it with z = a + ib

a = -4 ; b = 4\sqrt{3}

converting into polar form,

r = \sqrt{a^{2} + b^{2}  }

r = \sqrt{(-4)^{2}+ (4\sqrt{3}) ^{2} }

r = \sqrt{16 + ( 16*3 ) }

r = \sqrt{16 + 48}

r = \sqrt{64}

r = 8

x = tan-1(b/a) + \pi

x = tan-1(4\sqrt{3} / -4) + \pi

x = tan-1(-\sqrt{3}) + \pi

x = - \pi / 3 + \pi

x = 2\pi / 3

Now the polar form is ;

z = r(cos x + i sin x)

z = 8 ( cos(2\pi/3)  + i sin (2\pi/3) ) or

z = 8 ( cos (120°) + i sin (120°) )

I hope this answer is helpful :)

Similar questions