Math, asked by sankadevi6203, 11 months ago

z^2-8z+15/z^2-25 simplify by method of factirization​

Answers

Answered by Anonymous
53

Answer:

{\sf{{\dfrac{z - 3}{z + 5}} }}

Step-by-step explanation:

Given : {\sf{\ \ {\dfrac{z^2 - 8z + 15}{z^2 - 25}} }}

Using Middle Term Factorisation in numerator.

\Rightarrow{\sf{ {\dfrac{z^2 - 3z - 5z + 15}{z^2 - 25}}}}

Taking common terms out.

\Rightarrow{\sf{ {\dfrac{z(z - 3) - 5(z - 3)}{z^2 - 25}}}}

\Rightarrow{\sf{ {\dfrac{(z - 5)(z - 3)}{z^2 - 25}}}}

We can write the denominator as :

\Rightarrow{\sf{ {\dfrac{(z - 5)(z - 3)}{(z)^2 - (5)^2}}}}

{\boxed{\sf{\red{Identity \ : \ a^2 - b^2 = (a - b)(a + b)}}}}

{\sf{\red{Here, \ a = z, \ b = 5}}}

\Rightarrow{\sf{ {\dfrac{(z - 5)(z - 3)}{(z - 5)(z + 5)}}}}

Cancelling the common terms from the numerator and denominator.

\Rightarrow{\sf{ {\dfrac{{\cancel{(z - 5)}}(z - 3)}{{\cancel{(z - 5)}}(z + 5)}}}}

\Rightarrow{\sf{ {\dfrac{(z - 3)}{(z + 5)}}}}

\Rightarrow{\boxed{\sf{\green{ {\dfrac{z - 3}{z + 5}}}}}}

Answered by padmasinics
9

Pls mark me as Brainliest

Happy Learning !!

Attachments:
Similar questions