Math, asked by pallakahuja5pe9vko, 1 year ago

(z+3/4)(z+4/3) please solve this.

Answers

Answered by DaIncredible
16
(z + \frac{3}{4} )(z + \frac{4}{3} ) \\ \\ = z(z + \frac{4}{3} ) + \frac{3}{4} (z + \frac{4}{3} ) \\ \\ = {z}^{2} + \frac{4z}{3} + \frac{3z}{4} + 1 \\ \\ = {z}^{2} + \frac{16z + 9z}{12} + 1 \\ \\ = {z}^{2} + \frac{25z}{12} + 1 \\ \\ = 12( {z}^{2} + \frac{25z}{12} + 1) \\ \\ = 12 {z}^{2} + 25z + 12 \\ \\ = 12 {z}^{2} + 16z + 9z + 12 \\ \\ = 4z(3z + 4) + 3(3z + 4) \\ \\ = (4z + 3)(3z + 4) \\ \\ 4z + 3 = 0 \\ 4z = - 3 \\ z = - \frac{3}{4} \\ \\ 3z + 4 = 0 \\ 3z = - 4 \\ z = - \frac{4}{3} \\ \\ \bf \: So, \: the \: value \: of \: z \: is \: either \: - \frac{3}{4} \\ \bf \: or \: - \frac{4}{3}

If any doubt, please ask ;)
Answered by Anonymous
11
 \underline \bold {Solution:-}

(z +  \frac{3}{4} )(z +  \frac{4}{3} ) \\  \\  on \: multiplying \: them \\  \\  = z(z +  \frac{4}{3} ) +  \frac{3}{4} (z +  \frac{4}{3} ) \\  \\ on \: multiplying \: inside \: the \: bracket \\  \\  =  {z}^{2}  +  \frac{4z}{3}  +  \frac{3z}{4}  +  \frac{3}{4}  \times  \frac{4}{3}  \\  \\  = {z}^{2}  +  \frac{4z}{3}  +  \frac{3z}{4}  + 1 \\  \\ on \: taking \: the \: lcm \: of \: middle \: term \\  \\  =  {z}^{2}  +  \frac{4 \times 4z + 3 \times 3z}{3 \times 4}  + 1 \\  \\  =  {z}^{2}  +  \frac{16z + 9z}{12}  + 1 \\  \\   =  {z}^{2}  +  \frac{25z}{12}   + 1\\  \\ =  \frac{1}{12} (12 {z}^{2}  + 25z + 12)

It can be solved only this much.

It's form can be changed further , but....


The value of z cannot be find out from it , because the information given is not sufficient for that
Similar questions