Z(p+q) = tan x+tan y
Answers
Answered by
1
Answer:
x+y+z=pi
=> tan(x) +tan(y) + tan(z)=tan(x)tan(y)tan(z)
let tan(x)=a
tan(y)=b
tan(z)=c
a+b+c=abc
ab=18
bc=2
(ab)*(bc)=18*2=36
=> ab^2c=36
abc*b=36
(a+b+c)*b=36 (because a+b+c=abc)
ab+b^2+bc=36
18+b^2+2=36
b^2=16
b=4
tan(y)=4
3.6k views · View 7 Upvoters
Related QuestionsMore Answers Below
If X, Y, Z are the angles of a triangle, how do I prove that tan(X/2) tan(Y/2) + tan(X/2) tan(Z/2) + tan(Z/2) tan(Y/2) = 1?
If x+y=π/2 and y+z=x, then tan x is equal to (A) 2 (tan y+tan z) (B) tan y+tan z (C) tan y +2tan z?
If (sec x + tan x) =2 then find (sec x - tan x)?
If x+y+z=xyz, then what will be tan−1x+tan−1y+tan−1z ?
A cubic equation f(x) is such that f(1) =1 ,f(2) = 2 ,f(3) =3 and f(4) =5 then f(6) =?
Similar questions