z1=1+3^(1÷2) i and z2=1+i then arg (z1/z2) is?
Answers
Answered by
0
Answer:
∴ arg(Z₁/Z₂) = 15°
Step-by-step explanation:
Given,
Z₁ = 1+√3i
Here, x=1 and y=√3
r₁ = √(x²+y²) = √[(1)²+(√3)²] = 2
θ₁ = tan⁻¹(y/x) = tan⁻¹(√3/1) = 60°
In polar form,
Z₁ = 2(cos 60°+isin60°)
Z₂ = 1+i
Here, x=1 and y=1
r₂ = √(x²+y²) = √[(1)²+(1)²] = √2
θ₂ = tan⁻¹(y/x) = tan⁻¹(1/1) = 45°
In polar form,
Z₂ = √2(cos 45°+isin 45°)
Now,
arg(Z₁/Z₂) = arg(Z₁) - arg(Z₂)
= θ₁-θ₂
= 60°- 45°
= 15°
Similar questions