Math, asked by kalyanibarma, 4 months ago

z1=-1,z2=i then find arg(z1/z2)​

Answers

Answered by Asterinn
4

Given :

  • z1 = -1

  • z2 = i

To find :

  • arg(z1/z2)

Solution :

It is given that :- z1 = -1 and z2 = i

 \implies  \sf  \dfrac{z1}{z2}  =  \dfrac{ - 1}{i}

[Where i = iota = √-1]

\implies  \sf  \dfrac{z1}{z2}  =  \dfrac{ - 1}{i}  \times  \dfrac{i}{i}

\implies  \sf  \dfrac{z1}{z2}  =  \dfrac{ - i}{ ({i})^{2} }

We know that :- i² = -1

\implies  \sf  \dfrac{z1}{z2}  =  \dfrac{ - i}{  - 1}

\implies  \sf  \dfrac{z1}{z2}  =  \dfrac{ i}{1} = i

Therefore, now :-

\implies  \sf arg \bigg( \dfrac{z1}{z2}   \bigg)= arg \bigg( \dfrac{ - 1}{i}  \bigg)

\implies  \sf arg \bigg( \dfrac{ - 1}{i}  \bigg)  = arg( {i}  )

we know that i lies on positive( imaginary) axis.

\implies  \sf  arg( {i}  )  =  \dfrac{\pi}{2}

So we get :-

\implies  \sf  arg \bigg( \dfrac{ - 1}{i}  \bigg)  =  \dfrac{\pi}{2}

Answer :

\sf arg \bigg( \dfrac{z1}{z2}   \bigg)= \dfrac{\pi}{2}

Similar questions