Math, asked by sagrtamang6, 2 months ago

|Z1| = |Z2| = 1 then prove that |Z1 +Z2| = |1\Z1 + 1\ Z2|​

Answers

Answered by mathdude500
1

\large\underline{\bold{Given \:Question - }}

 \sf \: If \:  z_1 \:  and \:  z_2 \:  are \:  complex \:  numbers \:  such \:  that \:  |z_2|  =  |z_1|  = 1

 \sf \: then \: prove \: that \:  |z_1 + z_2|  =  |\dfrac{1}{z_1}  + \dfrac{1}{z_2} |

\large\underline{\bold{Solution-}}

Identity used :-

  \bull \: \sf \: If \:  z \: = a + ib, \:  then \: conjugate \:  \:  \overline{z} = a - ib

 \bull \sf \: If \:  z \:  is \: complex \:  number, \:  then \: z \overline{z} =   { |z| }^{2}

 \bull \:  \sf \: If \:  z \:  is \: complex \:  number, \:  then \:  |z|  = |\overline{z}|

Let's solve the problem now!!

Given that

 \sf \:  |z_1|  = 1

On squaring both sides, we get

  \sf \: { |z_1| }^{2}  = 1

 \sf \: z_1\overline{z_1} = 1 \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  (  \bf\because \:   { |z| }^{2}  = z\overline{z})

 \sf \:  \therefore \: z_1 = \dfrac{1}{\overline{z_1}}  -  - (1)

Similarly,

 \sf \:  \therefore \: z_2 = \dfrac{1}{\overline{z_2}}  -  - (2)

Now,

  • Consider,

 \sf \:  |z_1 + z_2|

 \sf \:  =  \:   \bigg|\dfrac{1}{\overline{z_1}}  + \dfrac{1}{\overline{z_2}}  \bigg|  \:  \:  \:   \:  \:  \: \{ \: \bf \:  using \: equation \: (1) \: and \: (2) \}

 \sf \:  =  \:   \bigg|\overline{\dfrac{1}{z_1}  + \dfrac{1}{z_2} } \bigg|  \:  \:   \:  \:  \:  \: \{  \bf\because \: \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \}

 \sf \:  =  \:   \bigg|\dfrac{1}{z_1}  + \dfrac{1}{z_2}  \bigg|  \:  \:  \:   \:  \:  \:  \: \{  \bf\because \:  |\overline{z}|  =  |z|  \}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Conjugate of Complex Number :-

 \sf \: Conjugate \:  of  \: a \: complex \:  number \:  z = x + iy  \:  is   \: x − iy

 \sf \: and \:  which  \: is  \: denoted \:  as \: \overline{z}

That is,

 \sf \: If \:  z = \: x + iy \: then \:  = x - iy

Properties of conjugate :-

 \sf \: \overline{z_1  -  z_2} = \overline{z_1}  -  \overline{z_2}

 \sf \: \overline{z_1 z_2} = \overline{z_1}  \:  \: \overline{z_2}

Similar questions