Math, asked by mounikaranivelagam, 9 months ago

zeroes of the polynomial p(x)=2x^2-9-3x are​

Answers

Answered by khushisingh637
10

Answer:

2X^2-3x - 9

2x^2 _6x + 3x - 9

2x ( x _3) + 3( x - 3 )

(x-3) (2x + 3 ) .

X= 3 , x= -3 / 2

______________

Answered by Anonymous
66

Step-by-step explanation:

GIVEN :-

  • A quadratic polynomial = 2x² - 9 - 3x.

TO FIND :-

  • The zeroes of quadratic polynomial.

SOLUTION :-

 \\  :  \implies \displaystyle \sf \: 2x ^{2}  - 9 - 3x = 0 \\  \\  \\

  :  \implies \displaystyle \sf \: 2x ^{2}  - 3x - 9 = 0 \\  \\  \\

  :  \implies \displaystyle \sf \: 2x ^{2}  - 6x + 3x - 9  = 0\\  \\  \\

  :  \implies \displaystyle \sf \: 2x(x - 3)  + 3( x - 3)  = 0\\  \\  \\

  :  \implies \displaystyle \sf \: (2x + 3)(x - 3) = 0 \\  \\  \\

  :  \implies \displaystyle \sf \: 2x + 3 = 0 \: , \: x - 3 = 0 \\  \\  \\

 :  \implies \displaystyle \sf \:2x = 0 - 3 \: , \: x = 0 + 3 \\  \\  \\

 :  \implies \displaystyle \sf \:2x =  - 3 \: , \: x = 3 \\  \\  \\

 :  \implies  \underline{ \boxed{\displaystyle \sf  \bold{\:x =  \frac{ - 3}{2} \:  , \: x = 3}}}

  \boxed{\begin{minipage}{5.5 cm} {$\bigstar\: \textsf{For a Quadratic Polynomial :}}\\\\ {\qquad\sf p(x) = ax$^\sf2$ \sf + bx + c}\\\sf with zeroes \alpha\:\sf and\:\beta \\\\\\ {\textcircled{\footnotesize1}} \:\:\alpha +\beta= \dfrac{ - \:b}{a}\:\:\bigg\lgroup\bf Sum\:of\:Zeroes\bigg\rgroup \\\\\\{\textcircled{\footnotesize2}} \: \:\alpha \beta= \sf\dfrac{c}{a}\:\:\bigg\lgroup\bf Product\:of\:Zeroes\bigg\rgroup\end{minipage}}

Similar questions