Math, asked by navatej15, 9 months ago

Zeroes of the polynomial p(x) = x^2 - 9 are ​

Answers

Answered by Anonymous
4

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Zeroes \ of \ the \ polynomial \ are}

\sf{-3 \ and \ 3.}

\sf\orange{Given:}

\sf{\implies{p(x)=x^{2}-9}}

\sf\pink{To \ find:}

\sf{Zeroes \ of \ the \ polynomial.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\implies{x^{2}-9}}

\sf{\implies{x^{2}-3^{2}}}

\sf{According \ to \ identity}

\sf{a^{2}-b^{2}=(a+b)(a-b)}

\sf{\implies{(x+3)(x-3)}}

\sf{\implies{\therefore{x=-3 \ or \ 3}}}

\sf\purple{\tt{\therefore{Zeroes \ of \ the \ polynomial \ are}}}

\sf\purple{\tt{-3 \ and \ 3.}}

Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x=\pm 3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  - 9 = 0 \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies zeroes \: of \: polynomial =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {x}^{2}  - 9 = 0 \\  \\ \tt:  \implies  {x}^{2}  = 9 \\  \\ \tt:  \implies x =  \sqrt{9}  \\  \\  \green{\tt:  \implies x =  \pm3} \\  \\  \bold{Alternate \: method : } \\  \tt:  \implies  {x}^{2}  - 9 = 0 \\  \\  \tt \circ \: a = 1 \:  \:   \: \:  \: b = 0  \:  \:  \:  \:  \: c =  - 9\\  \\ \tt:  \implies  x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\ \tt:  \implies  x =  \frac{ - 0  \pm \sqrt{ {0}^{2} - 4 \times 1 \times ( - 9) } }{2 \times 1}  \\  \\ \tt:  \implies  x =  \frac{ \pm \sqrt{36} }{2}  \\  \\ \tt:  \implies  x =   \frac{ \pm6}{2}  \\  \\  \green{\tt:  \implies  x =  \pm 3}

Similar questions