Math, asked by noor407, 6 months ago

Zeroes of the quadratic polynomial x^2 + 3x + 2 are ​

Answers

Answered by nishathakur2580
0

Answer:

this is your answer may be it is helpfull

Step-by-step explanation:

The zeros of polynomial p(x)=x

2

−3x+2 can be given y p(x)=0

⟹x

2

−3x+2=0

x

2

−2x−x+2=0

x(x−2)−1(x−2)=0

(x−1)(x−2)=0

x=1,2

Answered by mamtabgs395
1

Step-by-step explanation:

x

2

+3x+2

x {}^{2} + (2 + 1)x + 2x

2

+(2+1)x+2

{x}^{2} + 2x + x + 2x

2

+2x+x+2

x(x + 2) + 1(x + 2)x(x+2)+1(x+2)

(x + 1)(x + 2)(x+1)(x+2)

\begin{gathered}(x + 1) = 0 \: \: \: \: \: \: \: \: \: \: \: \: (x + 2) = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: x = - 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:x = - 2\end{gathered}

(x+1)=0(x+2)=0

x=−1x=−2

verification - - - -verification−−−−

\begin{gathered}sum \: of \: zeros \: = \frac{b}{a} \\ \\ \: \: \: \: \: \: \: - 1 + ( - 2) = \frac{ - 3}{1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 1 - 2 = - 3 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 3 = - 3\end{gathered}

sumofzeros=

a

b

−1+(−2)=

1

−3

−1−2=−3

−3=−3

\begin{gathered}product \: of \: zeros = \frac{c}{a} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 1 \times - 2 = \frac{2}{1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:2 = 2\end{gathered}

productofzeros=

a

c

−1×−2=

1

2

2=2

hence \: verified..henceverified..

_________________________________

hope \: it \: helps....hopeithelps....

Similar questions