Zeroes of the quadratic polynomial x^2 + 3x + 2 are
Answers
Answer:
this is your answer may be it is helpfull
Step-by-step explanation:
The zeros of polynomial p(x)=x
2
−3x+2 can be given y p(x)=0
⟹x
2
−3x+2=0
x
2
−2x−x+2=0
x(x−2)−1(x−2)=0
(x−1)(x−2)=0
x=1,2
Step-by-step explanation:
x
2
+3x+2
x {}^{2} + (2 + 1)x + 2x
2
+(2+1)x+2
{x}^{2} + 2x + x + 2x
2
+2x+x+2
x(x + 2) + 1(x + 2)x(x+2)+1(x+2)
(x + 1)(x + 2)(x+1)(x+2)
\begin{gathered}(x + 1) = 0 \: \: \: \: \: \: \: \: \: \: \: \: (x + 2) = 0 \\ \: \: \: \: \: \: \: \: \: \: \: \: x = - 1 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:x = - 2\end{gathered}
(x+1)=0(x+2)=0
x=−1x=−2
verification - - - -verification−−−−
\begin{gathered}sum \: of \: zeros \: = \frac{b}{a} \\ \\ \: \: \: \: \: \: \: - 1 + ( - 2) = \frac{ - 3}{1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 1 - 2 = - 3 \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 3 = - 3\end{gathered}
sumofzeros=
a
b
−1+(−2)=
1
−3
−1−2=−3
−3=−3
\begin{gathered}product \: of \: zeros = \frac{c}{a} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: - 1 \times - 2 = \frac{2}{1} \\ \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:2 = 2\end{gathered}
productofzeros=
a
c
−1×−2=
1
2
2=2
hence \: verified..henceverified..
_________________________________
hope \: it \: helps....hopeithelps....