Math, asked by vasumakkar1234, 9 months ago

zeros of the quadratic polynomial 3x square + 11 x minus 6 is​

Answers

Answered by Anonymous
11

Method 1 :-

By splitting middle term

\sf \implies {3x}^{2} + 9x + 2x + 6 = 0 \\  \\\sf \implies3x(x + 3) + 2(x + 3) = 0\\  \\ \sf \implies(x + 3)(3x + 2) = 0 \\  \\ \sf \implies x + 3 = 0 \\  \\ \implies\boxed{ \boxed{ \sf x =  - 3}} \\  \\ \sf \implies3x + 2 = 0 \\  \\ \implies\boxed{ \boxed{ \sf x =   - \frac{2}{3}}}

Method 2 :

By using quadratic formula

 \large \implies\boxed{\boxed{ \sf \green{x =\frac{ - b \pm \sqrt{ {b}^{2} - 4ab } }{2a}}}}

Here

  • a = 3
  • b = 11
  • c =6

Substitute values in formula

\sf \implies x =  \frac{ - 11 \pm \sqrt{ {11}^{2} - 4 \times 3 \times 6 } }{2 \times 3} \\  \\  \sf \implies x =  \frac{ - 11 \pm \sqrt{121 - 72} }{6} \\ \\\sf \implies x = \frac{ -11 \pm \sqrt{49} }{6} \\  \\ \sf \implies x =  \frac{ - 11 \pm 7 }{6} \\  \\\sf \implies x =  \frac{ - 11 +  7 }{6} \\  \\\implies \boxed{\boxed{ \sf x =   - \frac{2}{3}}} \\  \\ \sf \implies x =  \frac{ - 11 -  7 }{6} \\  \\\implies\boxed{ \boxed{ \sf x =  - 3}}

Answered by Anonymous
4

Answer:

Hope it helps you.......

Attachments:
Similar questions