Math, asked by digiprem, 2 months ago

zeros of the quadratic polynomial are
(5 - 2 \sqrt{3)} (5 + 2 \sqrt{3} )
foam a quadratic polynomial​

Answers

Answered by Evilhalt
365

 \bold \star{ \underline{ \underline{ \textsf{ \textbf{ \color{red}{Gíven :  - }}}}}}

  • Two Zeroes of a quadratic polynomial.

 \qquad \blacktriangleright \: {  \sf{ \color{green}{ \alpha  = (5 + 2 \sqrt{3} )}}}

 \qquad \blacktriangleright \: {  \sf{ \color{green}{ \beta  = (5  -  2 \sqrt{3} )}}}

 \bold \star{ \underline{ \underline{ \textsf{ \textbf{ \color{red}{To \:  Find :  - }}}}}}

  • A quadratic polynomial

  \circ \:  \: {  \underline{ \boxed{ \sf{ \color{purple}{Sum  \: of  \: Zeroes  =  \alpha  +  \beta }}}}}

 \qquad \leadsto \:   {= (5 + 2 \sqrt{3} ) +(5 - 2 \sqrt{3})  }

 \qquad \leadsto \:   {= (5 + \cancel{ 2 \sqrt{3} }) +(5 -  \cancel{2 \sqrt{3}})  }

 \qquad \leadsto \:   {= (5 + 5)}

 \qquad \leadsto \:    { \underline{\fbox{ \pink{= 10}}}}

  \circ \:  \: {  \underline{ \boxed{ \sf{ \color{purple}{ Product \:  of  \: Zeroes =  \alpha   \times   \beta }}}}}

 \qquad \leadsto \:   {= (5 + 2 \sqrt{3} )   \times (5 - 2 \sqrt{3})  }

 \qquad \leadsto \:   { \sf{(a - b)(a - b) =  {a}^{2}  -  {b}^{2} }}

 \qquad \leadsto \:   { =  {5}^{2} -  {(2 \sqrt{3})  \: }^{2}  }

 \qquad \leadsto \:   { =  25 - (4 \times 3)}

 \qquad \leadsto \:   { =  25 - 12}

 \qquad \leadsto \:    { \underline{\fbox{ \pink{= 13}}}}

  • Now, standard form of quadratic polynomial is

 \qquad  \star  \: \: {  \sf{ \color{green}{ a {x}^{2} + b(x) + (c) }}} \\  \sf{where \: a ≠0}

  • The required polynomial is

\sf{ {x}^{2}  - (sum \: of \: zeroes)x +(product \: of \: zeroes) }

 \qquad \: {\sf { \color{red}{ =  {x}^{2}  - 10x + 13}}}

  • Hence the quadratic polynomial is

 \qquad \: {\sf { \color{red}{ =  {x}^{2}  - 10x + 13}}}

__________________________________

Answered by XxTechnoBoyxX
93

 \small \red\bigstar \:  \:  \bold \red{GIVEN :-}

 \small  \underline\bold \orange{TWO ~ZEROES~ OF~ A ~QUADRATIC ~POLYNOMIAL }

 \bold  \red\rightarrowtail \bold \green{a = (5 + 2 \sqrt{3}) }

 \bold \red\rightarrowtail \bold \green{b = (5 - 2 \sqrt{3}) }

 \bold \red\bigstar  \:  \: \bold \red{To  \:  \: Find :-}

 \small  \underline\bold \orange{A~QUADRATIC~POLYNOMIAL}

  \small\bold \ \spadesuit \:  \:  \bold \red{SUM~OF~ZEROES=A+B}

 \bold\dashrightarrow \bold \red{(5 + 2 \sqrt{3}) + (5 - 2 \sqrt{3})  }

 \bold\dashrightarrow \bold \red{(5 +  \cancel{2 \sqrt{3}}  + (5 -  \cancel{2 \sqrt{3} })}

 \bold\dashrightarrow \bold \red{(5 + 5)}

 \bold\dashrightarrow \fbox  \pink{10}

\small\bold\spadesuit  \: \bold \red{PRODUCT~OF~ZEROES \:  \:  \blue{a \times b}}

 \bold\dashrightarrow \bold \red{(5 + 2 \sqrt{3} ) \times (5 - 2 \sqrt{3}) }

 \bold\dashrightarrow \bold \red{(a - b)(a - b) =  {a}^{2}  -  {b}^{2} }

 \bold\dashrightarrow \bold \red{5 {}^{2} - (2 \sqrt{3} ) {}^{2}  }

 \bold\dashrightarrow \bold \red{25 - (4 \times 3)}

 \bold\dashrightarrow \bold \red{25 = 12}

 \bold\dashrightarrow \fbox \pink{13}

  \small\bold\spadesuit \:  \bold \red{NOW ~STANDARD ~FORM~ OF ~QUADRATIC ~POLYNOMIAL</p><p>}

 \bold \pink \bigstar  \: \bold \pink{Ax {}^{2} + B(x) + (c) }

  \large\bold \blue{WHERE~ A    \: \cancel = \: 0 }

 \bold\spadesuit  \: \bold \red{THE \:  REQUIRED  \: POLYNOMIAL \:  IS }

 \bold{X^2-(SUM~OF~ZEROES) X + (PRODUCT~OF~ZEROES) }

______________________

☢ HENCE THE QUADRATIC POLYNOMIAL IS :-

 \large \bold \red{x {}^{2} - 10x + 13  \:  \: \checkmark }

Similar questions