Math, asked by Anonymous, 1 year ago

.....................​

Attachments:

Answers

Answered by adityamahale2003
3

Answer:

13cm

Step-by-step explanation:

We know that the formula for altitude of equuilateral triangle is h=√3a/2

Where, a is the side of the triangle.

So,

h=√3×15/2

 =7.5√3

 =12.99

 =13cm (approx)

Answered by Anonymous
22

Step-by-step explanation:

We know the area of equilateral triangle

 \frac{ \sqrt{3} }{4}  {a }^{2}  \\  \\  =  \frac{ \sqrt{3} }{4}  \times 15 \times 15 \\  \\  =  \frac{225 \sqrt{3} }{4}  \\  \\ we \: know \: the \: area \: of \: triangle \\  \\  \frac{225 \sqrt{3} }{4}  =  \frac{1}{2} \times \: b  \times  h \\  \\  \frac{225 \sqrt{3} }{4}  =  \frac{1}{2}  \times 15 \times h \\  \\  \frac{225 \sqrt{3} }{4}  \times 2 \times  \frac{1}{15} = h \\  \\ 7.5 \sqrt{3} = h \\  \\ put \: the \: value \: of \:  \sqrt{3}  \\  \\ 7.5 \times 1.73(approx) \\  \\ 12.975 \:  \:  \:  {cm}^{2}(approx)

Similar questions