Math, asked by Anonymous, 10 months ago

................................................​

Attachments:

Answers

Answered by umiko28
4

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\red{LHS  =  \frac{1 + sin \alpha - cos \alpha  }{1  + sin \alpha  + cos \alpha  } } \\  \sf\red{ =  >  \frac{[( {1 + sin \alpha ) - cos \alpha ]}^{2} }{( {1 + sin \alpha)   + cos \alpha )}^{2} } } \\  \sf\red{ =  > \frac{( {1 + sin \alpha) }^{2}  +  {cos}^{2} \alpha  - 2(1 + sin \alpha ) \times cos }{ ({1 + sin \alpha) }^{2} +  {cos}^{2} \alpha  + 2(1 + sin \alpha ) \times cos \alpha   }  } \\  \sf\red{ =  >  \frac{1 +  {sin}^{2} \alpha  + 2sin \alpha  +  {cos}^{2} \alpha  - (2 + 2sin \alpha )cos \alpha   }{ 1 +  {sin}^{2} \alpha  + 2sin \alpha  +  {cos}^{2} \alpha  + (2 + 2sin \alpha )cos \alpha   }  } \\  \sf\purple{using \: pythagorean \: identities =  {sin}^{2} \alpha  +  {cos}^{2} \alpha  = 1  } \\  \sf\red{ =  >  \frac{1 + 1 + 2sin \alpha  - (2 + 2sin \alpha )cos \alpha }{1 + 1 + 2sin \alpha   + (2 + sin \alpha )cos \alpha } } \\  \sf\red{   =  > \frac{(2 + 2sin \alpha) - (2 + 2sin \alpha )cos \alpha  }{(2 + 2sin \alpha ) + (2 + 2sin \alpha )}  }  \\  \sf\red{ =  >  \frac{(2 + 2sin \alpha)[1 - cos \alpha ] }{(2 + 2sin \alpha )[1 + cos \alpha ]} } \\  \sf\red{  =  > \frac{ 1 + cos \alpha }{1 - cos \alpha } } \\  \sf\red{LHS = RHS} \\  \\  \large\boxed{ \fcolorbox{blue}{yellow}{hope \: it \: help \: you}}

Answered by anantrajusharma
1

Answer:

refer to the attachment

JAI SHREE KRISHNA

Attachments:
Similar questions