____________________________
Answers
Answer:
Given
- a + b + c = 3 ___________ ( 1 )
- a² + b² + c² = 9 _________ ( 2 )
- a³ + b³ + c³ = 12 ________ ( 3 )
To find:
- a⁴ + b⁴ + c⁴ = 0
Solution:
Taking equation 1
a + b + c = 3
Squaring on both sides
(a + b + c)² = 3²
(a + b + c)² = 9 ___________ ( 4 )
We know that
2(ab + bc + ac) = (a + b + c)² - (a² + b² + c²)
2(ab + bc + ac) = 3² - 9
(°.° Equation 4 & 2)
2(ab + bc + ac) = 0
ab + bc + ac = 0__________ ( 5 )
Taking equation 3
a³ + b³ + c³ = 12
Adding + 3abc - 3abc on LHS
a³ + b³ + c³ + 3abc - 3abc = 12
(a + b + c)(a² + b² + c² - ab - bc - ac) + 3abc = 12
(a + b + c)[a² + b² + c² - (ab + bc + ac)] + 3abc = 12
Substituting the values of equation 1 , 2 & 5
(3)(9 - 0) + 3abc = 12
12 - 3(9) = 3abc
12 - 27 = 3abc
- 15 = 3abc
- 15/3 = 6abc
abc = - 5
Now,
a²b² + b²c² + a²c² = (ab + bc + ac)² - 2abc(a + b + c)
★ 0 - 2(-5)(3)
★ 30 ________ ( 6 )
Finding : a⁴ + b⁴ + c⁴
Using
x⁴ + y⁴ + z⁴ = (x + y + z)⁴ - 2(x²y² + y²z² + x²z²)
→ a⁴ + b⁴ + c⁴ = [(a + b + c)²]² - 2{[(ab)² + (bc)² + (ac)² + 2(ab + bc + ac)]}
→ a⁴ + b⁴ + c⁴ = 9² - 2[a²b² + b²c² + a²c² + 2(0)]
→ a⁴ + b⁴ + c⁴ = 81 - 2(a²b² +b²c² + a²c² + 0)
→ a⁴ + b⁴ + c⁴ = 81 - 2(30)
(°.° Equation 6)
→ a⁴ + b⁴ + c⁴ = 81 - 60
→ a⁴ + b⁴ + c⁴ = 21
Hence, a⁴ + b⁴ + c⁴ = 21
On squaring both sides, we get
Now,
- We know that
On substituting the values, we get
Now,
Consider,
On substituting the above evaluated values and given values, we get
Now,
We know that,
On Substituting the value from above evaluated and given values, we get