Math, asked by NewBornTigerYT, 9 months ago

____________________________​

Attachments:

Answers

Answered by ItzArchimedes
54

Answer:

Given

  • a + b + c = 3 ___________ ( 1 )
  • a² + b² + c² = 9 _________ ( 2 )
  • a³ + b³ + c³ = 12 ________ ( 3 )

To find:

  • a⁴ + b⁴ + c⁴ = 0

Solution:

Taking equation 1

a + b + c = 3

Squaring on both sides

(a + b + c)² = 3²

(a + b + c)² = 9 ___________ ( 4 )

We know that

2(ab + bc + ac) = (a + b + c)² - (a² + b² + c²)

2(ab + bc + ac) = 3² - 9

(°.° Equation 4 & 2)

2(ab + bc + ac) = 0

ab + bc + ac = 0__________ ( 5 )

Taking equation 3

a³ + b³ + c³ = 12

Adding + 3abc - 3abc on LHS

a³ + b³ + c³ + 3abc - 3abc = 12

(a + b + c)(a² + b² + c² - ab - bc - ac) + 3abc = 12

(a + b + c)[a² + b² + c² - (ab + bc + ac)] + 3abc = 12

Substituting the values of equation 1 , 2 & 5

(3)(9 - 0) + 3abc = 12

12 - 3(9) = 3abc

12 - 27 = 3abc

- 15 = 3abc

- 15/3 = 6abc

abc = - 5

Now,

a²b² + b²c² + a²c² = (ab + bc + ac)² - 2abc(a + b + c)

★ 0 - 2(-5)(3)

★ 30 ________ ( 6 )

Finding : a⁴ + b⁴ + c⁴

Using

x⁴ + y⁴ + z⁴ = (x + y + z)⁴ - 2(x²y² + y²z² + x²z²)

→ a⁴ + b⁴ + c⁴ = [(a + b + c)²]² - 2{[(ab)² + (bc)² + (ac)² + 2(ab + bc + ac)]}

→ a⁴ + b⁴ + c⁴ = 9² - 2[a²b² + b²c² + a²c² + 2(0)]

→ a⁴ + b⁴ + c⁴ = 81 - 2(a²b² +b²c² + a²c² + 0)

→ a⁴ + b⁴ + c⁴ = 81 - 2(30)

(°.° Equation 6)

→ a⁴ + b⁴ + c⁴ = 81 - 60

→ a⁴ + b⁴ + c⁴ = 21

Hence, a⁴ + b⁴ + c = 21


Anonymous: Great
MOSFET01: nice
Anonymous: Great answer :-
Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{a + b + c = 3} \\ &\sf{ {a}^{2}  +  {b}^{2}  +  {c}^{2} =  9}\\ &\sf{ {a}^{3} +  {b}^{3}  +  { c}^{3} = 12  } \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{ {a}^{4} +  {b}^{4}  +  {c}^{4}  = ? }  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

  \large \underline{\tt \:  \red{ According  \: to  \: statement }}

 \longmapsto\tt \: a + b + c = 3

On squaring both sides, we get

\longmapsto\tt \:  {(a + b + c)}^{2}  =  {3}^{2}

\longmapsto\tt \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca) = 9

\longmapsto\tt \: 9 + 2(ab + bc + ca) = 9

\longmapsto\tt \: 2(ab + bc + ca) =0

\rm :\implies\: \pink{ab + bc + ca=0}

Now,

  • We know that

\longmapsto\tt \:  {a}^{3}  +  {b}^{3}  +  {c}^{3}  - 3abc \:  =

\tt \: (a + b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2}  - (ab + bc + ca))

On substituting the values, we get

\rm :\implies\:12 - 3abc = 3(9 - 0)

\rm :\implies\:3abc = 12 - 27

\rm :\implies\:3abc =  - 15

\rm :\implies\: \pink{abc =  - 5}

Now,

Consider,

 \tt \: (ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)

On substituting the above evaluated values and given values, we get

\rm :\implies\: {0}^{2}  =  {a}^{2} {b}^{2} + {b}^{2}{c}^{2} +{c}^{2}{a}^{2} + 2( - 5)(3)

\rm :\implies\:0 = {a}^{2} {b}^{2} + {b}^{2}{c}^{2} +{c}^{2}{a}^{2} - 30

\bf\implies \: \red{{a}^{2} {b}^{2} + {b}^{2}{c}^{2} +{c}^{2}{a}^{2} = 30}

Now,

We know that,

\longmapsto\tt \:  \tt \:  {( {a}^{2}+ {b}^{2}+ {c}^{2} )}^{2}

 \tt \:  =  {a}^{4}+{b}^{4} +{c}^{4}  + 2({a}^{2} {b}^{2} + {b}^{2}{c}^{2} +{c}^{2}{a}^{2})

On Substituting the value from above evaluated and given values, we get

\rm :\implies\: {(9)}^{2}  = {a}^{4}+{b}^{4} +{c}^{4} + 2(30)

\rm :\implies\:81 = {a}^{4}+{b}^{4} +{c}^{4} + 60

\bf\implies \: \blue{{a}^{4}+{b}^{4} +{c}^{4} = 21}

Similar questions