Math, asked by Anonymous, 9 months ago

_____________________!?​

Attachments:

Answers

Answered by Anonymous
4

\huge\star\underline\mathfrak{Answer:-}⋆

Attachments:
Answered by Anonymous
3

\int _0^{\frac{1}{4}\sqrt{3}}\frac{2x\arcsin \left(2x\right)}{\sqrt{1-4x^2}}dx

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=2\cdot \int _0^{\frac{1}{4}\sqrt{3}}\frac{x\arcsin \left(2x\right)}{\sqrt{1-4x^2}}dx

\mathrm{Apply\:u-substitution:}\:u=2x

=2\cdot \int _0^{\frac{\sqrt{3}}{2}}\frac{u\arcsin \left(u\right)}{4\sqrt{1-u^2}}du

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=2\cdot \frac{1}{4}\cdot \int _0^{\frac{\sqrt{3}}{2}}\frac{u\arcsin \left(u\right)}{\sqrt{1-u^2}}du

\frac{u\arcsin \left(u\right)}{\sqrt{1-u^2}}=\left(u\arcsin \left(u\right)\right)\frac{1}{\sqrt{1-u^2}}

=2\cdot \frac{1}{4}\cdot \int _0^{\frac{\sqrt{3}}{2}}u\arcsin \left(u\right)\frac{1}{\sqrt{1-u^2}}du

\mathrm{Apply\:Integration\:By\:Parts:}\:u=\arcsin \left(u\right),\:v'=\frac{1}{\sqrt{1-u^2}}u

=2\cdot \frac{1}{4}\left[-\arcsin \left(u\right)\sqrt{1-u^2}-\int \:-1du\right]^{\frac{\sqrt{3}}{2}}_0

\int \:-1du=-u

=2\cdot \frac{1}{4}\left[-\arcsin \left(u\right)\sqrt{1-u^2}-\left(-u\right)\right]^{\frac{\sqrt{3}}{2}}_0

\mathrm{Simplify\:}2\cdot \frac{1}{4}\left[-\arcsin \left(u\right)\sqrt{1-u^2}-\left(-u\right)\right]^{\frac{\sqrt{3}}{2}}_0:\quad \frac{1}{2}\left[-\arcsin \left(u\right)\sqrt{1-u^2}+u\right]^{\frac{\sqrt{3}}{2}}_0

=\frac{1}{2}\left[-\arcsin \left(u\right)\sqrt{1-u^2}+u\right]^{\frac{\sqrt{3}}{2}}_0

\mathrm{Compute\:the\:boundaries}:\quad \left[-\arcsin \left(u\right)\sqrt{1-u^2}+u\right]^{\frac{\sqrt{3}}{2}}_0=\frac{\sqrt{3}}{2}-\frac{\pi }{6}

=\frac{1}{2}\left(\frac{\sqrt{3}}{2}-\frac{\pi }{6}\right)

\mathrm{Simplify}

=\frac{3\sqrt{3}-\pi }{12}

Similar questions