Math, asked by Anonymous, 7 months ago

ꇙꄲ꒒꒦ꏂ ꒐꓄....꒯ꄲꋊ'꓄ ꇙꉣꋬꂵ....​

Attachments:

Answers

Answered by shadowsabers03
4

Let us define a function such that,

\longrightarrow g(x)=\dfrac{x}{120}+\dfrac{x^3}{30}

Its derivative wrt x will be,

\longrightarrow g'(x)=\dfrac{1}{120}+\dfrac{x^2}{10}

Here g'(x)>0 for every x.

Hence g(x) is strictly increasing.

Our function is,

\longrightarrow f(x)=\left[\dfrac{x}{120}+\dfrac{x^3}{30}\right]

\longrightarrow f(x)=[g(x)]

For x=0,

\longrightarrow f(0)=\left[\dfrac{0}{120}+\dfrac{0^3}{30}\right]

\longrightarrow f(0)=0

For x=3,

\longrightarrow f(3)=\left[\dfrac{3}{120}+\dfrac{3^3}{30}\right]

\longrightarrow f(3)=\left[\dfrac{37}{40}\right]

\longrightarrow f(3)=0

Therefore, since g is strictly increasing,

\longrightarrow f(x)=0\quad\!\forall x\in[0,\ 3]

Then,

\displaystyle\longrightarrow\int\limits_{f(x)}^{f(x)+1}(f(x)+2)\ dx=\int\limits_{0}^{0+1}(0+2)\ dx

\displaystyle\longrightarrow\int\limits_{f(x)}^{f(x)+1}(f(x)+2)\ dx=\int\limits_0^12\ dx

\displaystyle\longrightarrow\underline{\underline{\int\limits_{f(x)}^{f(x)+1}(f(x)+2)\ dx=2}}

Hence 2 is the answer.

Similar questions