Math, asked by Anonymous, 8 months ago

ꇙꄲ꒒꒦ꏂ ꓄ꁝ꒐ꇙ ꆰ꒤ꏂꇙ꓄꒐ꄲꋊ ꒯꒤꒯ꏂ ​

Attachments:

Answers

Answered by pulakmath007
25

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \:  \: f(x) =  \frac{2020x + 131}{3x - 2020}

TO DETERMINE

The least value of

  \displaystyle \:  f(f( x ))+ f(f( \frac{4}{x} ))

CALCULATION

Here

f(f(x))

  = \displaystyle \:  \: f( \frac{2020x + 131}{3x - 2020} )

 =  \displaystyle \:  \:\frac{2020(\frac{2020x + 131}{3x - 2020})  + 131}{3(\frac{2020x + 131}{3x - 2020} )- 2020}

 \displaystyle \:  =   \frac{ {2020}^{2} x + 131 \times 2020 + 131 \times 3x - 131 \times 2020}{3 \times 2020x + 3 \times 131 - 3 \times 2020x +  {2020}^{2} }

 \displaystyle \:  =   \frac{ {2020}^{2} x  + 131 \times 3x }{ 3 \times 131 +  {2020}^{2} }

 \displaystyle \:  =  x \times  \frac{ {2020}^{2}   + 131 \times 3 }{ 3 \times 131 +  {2020}^{2} }

 = x

So

f(f(x)) = x

Hence

 \displaystyle \: f(f( \frac{4}{x} )) =  \frac{4}{x}

Let

y =  \displaystyle \:  f(f( x ))+ f(f( \frac{4}{x} ))

 \implies \: y =  \displaystyle \:  x+ \frac{4}{x}

Now Differentiating both sides with respect to x two times

   \displaystyle \: \frac{dy}{dx}  = 1 -   \frac{4}{ {x}^{2} }

   \displaystyle \:  \frac{ {d}^{2}y }{d {x}^{2} }   =   \frac{8}{ {x}^{3} }

For extremum value of y

   \displaystyle \: \frac{dy}{dx}  = 0

 \implies \:    \displaystyle \: 1 -   \frac{4}{ {x}^{2} }  = 0

 \implies \:  {x}^{2}  = 4

So

x =  \pm \: 2

Since

x > 0

So

x = 2

Now at x = 2

   \displaystyle \:  \frac{ {d}^{2}y }{d {x}^{2} }   =   \frac{8}{ {2}^{3} }  = 1 > 0

So y has least value at x = 2

And the required least value is

 \displaystyle \: 2 +  \frac{4}{2}  = 2 + 2 = 4

Answered by shadowsabers03
6

Given,

\longrightarrow f(x)=\dfrac{2020x+131}{3x-2020}

Then,

\longrightarrow f(f(x))=\dfrac{2020f(x)+131}{3f(x)-2020}

\longrightarrow f(f(x))=\dfrac{2020\left(\dfrac{2020x+131}{3x-2020}\right)+131}{3\left(\dfrac{2020x+131}{3x-2020}\right)-2020}

\longrightarrow f(f(x))=\dfrac{2020(2020x+131)+131(3x-2020)}{3(2020x+131)-2020(3x-2020)}

\longrightarrow f(f(x))=\dfrac{2020^2x+2020\times131+3\times131x-2020\times131}{3\times2020x+3\times131-3\times2020x+2020^2}

\longrightarrow f(f(x))=\dfrac{2020^2x+3\times131x}{3\times131+2020^2}

\longrightarrow f(f(x))=\dfrac{(2020^2+3\times131)x}{2020^2+3\times131}

\longrightarrow f(f(x))=x

Therefore,

\longrightarrow f(f(x))+f\left(f\left(\dfrac{4}{x}\right)\right)=x+\dfrac{4}{x}

For least value,

\longrightarrow \dfrac{d}{dx}\left[x+\dfrac{4}{x}\right]=0

\longrightarrow1-\dfrac{4}{x^2}=0

\longrightarrow x=\pm2\quad\quad\dots(1)

And,

\longrightarrow \dfrac{d^2}{dx^2}\left[x+\dfrac{4}{x}\right]>0

\longrightarrow \dfrac{8}{x^3}>0

\Longrightarrow x>0\quad\quad\dots(2)

From (1) and (2) we get,

\longrightarrow x=2

Hence,

\longrightarrow f(f(x))+f\left(f\left(\dfrac{4}{x}\right)\right)=2+\dfrac{4}{2}

\longrightarrow\underline{\underline{f(f(x))+f\left(f\left(\dfrac{4}{x}\right)\right)=4}}

Hence 4 is the answer.

Similar questions