Math, asked by rubykaushala, 4 months ago

.......................​

Attachments:

Answers

Answered by Anonymous
3

mark me brainlist

........ aapki help ho ...

Attachments:
Answered by anindyaadhikari13
8

Required Answer:-

Given to simplify:

 \rm \mapsto \dfrac{1}{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}  }

Solution:

 \rm \dfrac{1}{ \sqrt{7} +  \sqrt{6} +  \sqrt{13}  }

 \rm =  \dfrac{1}{ \sqrt{7} +  (\sqrt{6} +  \sqrt{13})  }

 \rm =  \dfrac{1 \times ( \sqrt{7}  - ( \sqrt{6} +  \sqrt{13} ) }{ (\sqrt{7} +  (\sqrt{6} +  \sqrt{13}))( \sqrt{7} - ( \sqrt{6} +  \sqrt{13}  )) }

 \rm =  \dfrac{\sqrt{7}  - \sqrt{6} -  \sqrt{13} }{ (\sqrt{7})^{2}  - (\sqrt{6} +  \sqrt{13})^{2}}

 \rm =  \dfrac{\sqrt{7}  - \sqrt{6} -  \sqrt{13} }{ 7  - (6 + 13 + 2 \sqrt{78}) }

 \rm =  \dfrac{\sqrt{7}  - \sqrt{6} -  \sqrt{13} }{ 7  - ( 19+ 2 \sqrt{78}) }

 \rm =  \dfrac{\sqrt{7}  - \sqrt{6} -  \sqrt{13} }{ 7  -19 -  2 \sqrt{78} }

 \rm =  \dfrac{\sqrt{7}  - \sqrt{6} -  \sqrt{13} }{ - 12-  2 \sqrt{78} }

 \rm =  \dfrac{\sqrt{7}  - \sqrt{6} -  \sqrt{13} }{ -( 12 + 2 \sqrt{78}) }

 \rm =  \dfrac{ \sqrt{6} +   \sqrt{13}  -  \sqrt{7} }{12 + 2 \sqrt{78}}

 \rm =  \dfrac{ (\sqrt{6} +   \sqrt{13}  -  \sqrt{7} )(12 - 2 \sqrt{78}) }{(12 + 2 \sqrt{78})(12 - 2 \sqrt{78} )}

 \rm =  \dfrac{ (\sqrt{6} +   \sqrt{13}  -  \sqrt{7} )(12 - 2 \sqrt{78}) }{{(12)}^{2}  - ( 2 \sqrt{78})^{2}}

 \rm =  \dfrac{ (\sqrt{6} +   \sqrt{13}  -  \sqrt{7} )(12 - 2 \sqrt{78}) }{144 -312}

 \rm =  \dfrac{ (\sqrt{6} +   \sqrt{13}  -  \sqrt{7} )(12 - 2 \sqrt{78}) }{ - 168}

 \rm =  \dfrac{\sqrt{6} (12 - 2 \sqrt{78})  +  \sqrt{13}(12 - 2 \sqrt{78} ) -  \sqrt{7}(12 - 2 \sqrt{78})  }{ - 168}

 \rm =  \dfrac{12 \sqrt{6} - 2 \sqrt{78 \times 6} +  12\sqrt{13}- 2 \sqrt{78 \times 13} -  12\sqrt{7} + 2 \sqrt{78 \times 7}  }{ - 168}

 \rm =  \dfrac{12 \sqrt{6} - 2 \sqrt{13\times  {6}^{2} } +  12\sqrt{13}- 2 \sqrt{6 \times  {13}^{2} } -  12\sqrt{7} + 2 \sqrt{78 \times 7}  }{ - 168}

 \rm =  \dfrac{12 \sqrt{6} - 12 \sqrt{13 } +  12\sqrt{13}- 26 \sqrt{6  } -  12\sqrt{7} + 2 \sqrt{78 \times 7}  }{ - 168}

 \rm =  \dfrac{12 \sqrt{6}- 26 \sqrt{6  } -  12\sqrt{7} + 2 \sqrt{78 \times 7}  }{ - 168}

 \rm =  \dfrac{- 14 \sqrt{6  } -  12\sqrt{7} + 2 \sqrt{78 \times 7}  }{ - 168}

 \rm =  \dfrac{2(- 7 \sqrt{6  } -  6\sqrt{7} +\sqrt{78 \times 7} ) }{ - 168}

 \rm =  \dfrac{(- 7 \sqrt{6  } -  6\sqrt{7} +\sqrt{78 \times 7} ) }{ -84}

 \rm =  \dfrac{\sqrt{546}- 6 \sqrt{7}  -  7\sqrt{6}  }{ -84}

Hence, this is the simplified form.

Answer:

 \rm \mapsto  \dfrac{\sqrt{546}- 6 \sqrt{7}  -  7\sqrt{6}  }{ -84}

Similar questions