0.3x +0.5y = 0.5,
0.5x +0.7y = 0.74
Find the value of x & y by the substitution method
I will mark you as brainliest
Answers
Step-by-step explanation:
Given Equations are:
0.3x + 0.5y = 0.5 ------ (i)
0.5x + 0.7y = 0.74 ------ (ii)
Substitution Method:
Multiply (i) & (ii) by 100, we get
30x + 50y = 50 ---- (iii)
50x + 70y = 74 ---- (iv)
Equation (iii) can be written as,
⇒ 30x + 50y = 50
⇒ 30x = (50 - 50y)
⇒ x = (50 - 50y)/30
Substitute x in (iv), we get
⇒ 50(50 - 50y/30) + 70y = 74
⇒ 50(50 - 50y) + 2100y = 2220
⇒ 2500 - 2500y + 2100y = 2220
⇒ -400y = -280
⇒ 40y = 28
⇒ y = 28/40
⇒ y = 0.7
Substitute y = 0.7 in (iii), we get
⇒ 30x + 50y = 50
⇒ 30x + 50(0.7) = 50
⇒ 30x + 35 = 50
⇒ 30x = 15
⇒ x = 0.5
∴ The values of x & y are 0.5 and 0.7
Hope it helps!
0.5 x +0.7 y = 0.74 (i)
multiply 10 on both sides in (i)
=> 5x+7y=7.4
0.3 x + 0.5 y =0.5 (ii)
multiply 10 on both sides in (ii)
3 x + 5 y = 5
y=1-0.6x (from ii equation)
Now, Substitute value in equation i
5x+7y = 5x + 7(1-0.6x)=7.4
=>5x +7-4.2x =7.4
=>0.8x+ 7 = 7.4
=>x=0.5
Now substitute x value in any equation.
Let us take the second equation.
0.3x + 0.5y =0.5
(0.3×0.5)+0.5y= 0.5
0.3+y= 1
∴y=0.7