0. The sum of the digits of a two-digit number is 9. The number obtained by interchanging the digits exceeds the given number by 27. Then the given number is *
Answers
Solution:-
Let the number at 10th place = x
And one the place no. = y
The number obtained = 10x + y
The sum of two digit number = x + y = 9 ......(i)eq
The number obtained by interchanging the digits exceeds the number is 27 :- 10y + x
Eq:-
10y + x - 10x - y = 27
9y - 9x = 27
9(y - x ) = 27
y - x = 3
x -y = -3 ..............( ii ) eq
Now Adding (i) and (ii) eq
x + y + x - y = 9 + - 3
2x = 6
x = 3
Now put the value of x on (i) eq
x + y = 9
3 + y = 9
y = 9 - 3
y = 6
x = 3 and y = 6
Now put the value of 10x + y , we get
10 × 3 + 6 => 36
Thus the number is 36
Answer :
Explanation :
Given :–
- Sum of a two digit number is 9 .
- The number obtained by interchanging the digits exceeds the original number by 27.
To Find :–
- THE ORIGINAL NUMBER .
Solution :–
Let the First (tens) digit of the Original Number be x and the Second (ones) digit be y .
→ According to the First Condition :-
⇒ x + y = 9 ------------(1)
→ According to the Second Condition :-
⇒ 10y + x - (10x + y) = 27
⇒ 10y + x -10x - y = 27
⇒ 10y - y + x - 10x = 27
⇒ 9y - 9x = 27
⇒ 9(y - x) = 27
⇒ y - x = 27 ÷ 9
⇒ y - x = 3
⇒ - (x - y) = 3
⇒ x - y = (-3) -----------(2)
Adding Equation(1) and Equation(2) :-
⇒ x + y + (x - y) = 9 + (-3)
⇒ x + x + y - y = 9 - 3
⇒ 2x = 6
⇒ x = 6 ÷ 2
⇒ x = 3
Now , putting the value of 'x' in Equation(1) :-
⇒ 3 + y = 9
⇒ y = 9 - 3
⇒ y = 6
So now we have both the digits :
→ Tens Digit => 3
→ Ones Digit => 6
Now the number will be in the form of :
→ 10(x) + (y)
→ 10(3) + (6)
→ 30 + 6
→ 36
∴ The required number is 36 .