0. Using properties of proportion, find x
(i)
√2- x /√2-x+√2+x/√2+x=3
Answers
Answer:
√2- x /√2-x+√2+x/√2+x=3
1 + 1 = 3
I think the question is incorrect........ it may be..........
√2- x /√2+x+√2+x/√2-x=3
(√2- x ) (√2-x ) / (√2+x)(√2-x ) + (√2+x ) (√2+x ) / (√2-x)(√2+x) = 3
{ (√2-x ) ^2 + (√2+x ) ^2 } / { 2 - x^2 } = 3
2 - 2√2 x + x² + 2 + 2√2 x + x² = 3 ( 2 - x² )
4 + 2 x² = 6 - 3 x²
3x² + 2x² = 6 - 4
5 x² = 2
x² = 2/5
x = ± √( 2/ 5 ) (answer )
if the answer is useful pls mark as brainliest........plss and do follow me
The value of x is
x = 3.
Given equation,
x 2 +x+1x 2 −x+1 = 13(x+1)14(x−1)
(1) x 2 +x+1x 2 −x+1 = 13x+1314x−14
Now, using the componendo dividendo property that is.
if ba = dc then a−ba+b = c−dc+d
We can write (1) as.
(x−27)(x 2 +1)=(−x)(27x−1)
x 3 −27x 2 +x−27=−27x 2 +x
x 3 −27x 2 +27x 2 +x−x=27
x 3 =27
therefore,
x = 3x=3