028. If the roots of the equation (a - b)x' + (b-c)x + (c-a) = 0 are equal, show that c, a and b are in AP.
Answers
Answered by
1
Step-by-step explanation:
a−b)x
2
+(b−c)x+(c−a)=0
rootsareequal.sodeterminant=0
(b−c)
2
−4(a−b)(c−a)=0
⇒(b
2
+c
2
−2bc)−4(ac−a
2
−bc+ab)=0
⇒b
2
+c
2
−2bc−4ac+4a
2
+4bc−4ab=0
⇒b
2
+c
2
+4a
2
−4ac+2bc−4ab=0
\begin{gathered}\Rightarrow {(b)}^{2} + {(c)}^{2} + {( - 2a)}^{2} + 2 \times ( - 2a ) \times c+ 2 bc + 2 \times ( - 2 a) \times b = 0 \\ \\ \Rightarrow {(b + c - 2a)}^{2} = 0 \\ \\ \Rightarrow b + c - 2a = 0 \\ \\ \Rightarrow b + c = 2a \\ \\ \Rightarrow b - a = a - c \end{gathered}
⇒(b)
2
+(c)
2
+(−2a)
2
+2×(−2a)×c+2bc+2×(−2a)×b=0
⇒(b+c−2a)
2
=0
⇒b+c−2a=0
⇒b+c=2a
⇒b−a=a−c
\boxed{ \textbf{Thus, \red{c, a and b} are in AP}}
Thus, c, a and b are in AP
Similar questions