Math, asked by kuldeepkumar12345, 1 month ago

08.
Prove that
(1 + tan A - sec A) #(1 + tan A + sec A) = 2 tan A​

Answers

Answered by prasadabhash77
0

Answer:

L.H.S

(1+tanA−secA)×(1+tanA+secA)

=(1+tanA)

2

−(secA)

2

[∵(a+b)(a−b)=a

2

−b

2

)]

=1+tan

2

A+2tanA−sec

2

A

=sec

2

A+2tanA−sec

2

A [∵sec

2

θ=1+tan

2

θ]

=2tanA

=R.H.S.

∴L.H.S=R.H.S

(1+tanA−secA)×(1+tanA+secA)=2tanA

Hence proved.

Similar questions