Math, asked by syedamehak5121491, 6 months ago

0X square + 3 x minus 10 equal to zero ​

Answers

Answered by CuteAnswerer
3

GIVEN :

  • \bf {x^2+3x-10=0}

TO FIND :

  • The roots.

SOLUTION :

Let the roots are α and β.

Here ,

  • a = 1

  • b = 3

  • c = -10

Finding α :

\longrightarrow\bf \alpha={\dfrac {-b+\sqrt {b^2-4ac}}{2a}} \\ \\

\longrightarrow\sf \alpha = \dfrac { - 3+\sqrt{(3)^2 - 4 \times 1 \times (-10) }}{2 \times 1} \\ \\

\longrightarrow\sf \alpha = \dfrac {-3 +\sqrt {9 + 40}}{2} \\ \\

\longrightarrow\sf \alpha = \dfrac {-3+\sqrt {49}}{2} \\ \\

\longrightarrow\sf \alpha = \dfrac {-3+7}{2} \\ \\

\longrightarrow\sf \alpha = \cancel{\dfrac {4}{2}} \\ \\

\longrightarrow \underline{ \huge{ \boxed{\boxed{ \bf{ \green{\alpha = 2}}}}}}

Finding β :

\longrightarrow\bf \beta={\dfrac {-b-\sqrt {b^2-4ac}}{2a}} \\ \\

\longrightarrow\sf \beta = \dfrac { - 3 -\sqrt{(3)^2 - 4 \times 1 \times( - 10) }}{2 \times 1} \\ \\

\longrightarrow\sf \beta = \dfrac {-3 -\sqrt {9 + 40}}{2} \\ \\

\longrightarrow\sf \beta = \dfrac {-3-\sqrt {49}}{2} \\ \\

\longrightarrow\sf \beta = \dfrac {-3-7}{2} \\ \\

\longrightarrow\sf \beta= \cancel{\dfrac {-10}{2}} \\ \\

\longrightarrow \underline{ \huge{ \boxed{\boxed{ \bf{ \green{\beta = -5}}}}}}

Answered by muskanperween225
2

Step-by-step explanation:

 {x}^{2}  + 3x - 10 = 0

 {x}^{2}  + (5 - 2)x - 10 = 0

 {x}^{2}  + 5x - 2x - 10 = 0

x(x + 5) - 2(x + 5) = 0

(x + 5)(x - 2) = 0

either, x+5=0, x= -5

or, x-2=0, x = 2

Similar questions