Math, asked by Questionologist8926, 1 year ago

(1,0,-1) ,Find direction angles and direction cosines of the given vector.

Answers

Answered by MaheswariS
0

Answer:

Direction cosines are

(\frac{1}{\sqrt2},0,\fac{-1}{\sqrt2})

Direction angles are

45^{\circ},90^{\circ},135^{\circ}

Step-by-step explanation:

\text{Let }\vec{r}=\hat{i}+0\hat{j}-\hat{k}

Then,

|\vec{r}|=\sqrt{1^2+0^2+(-1)^2}

|\vec{r}|=\sqrt{1+1}

|\vec{r}|=\sqrt{2}

\text{Direction cosines of }\vec{r}\:{ are }\:\frac{1}{\sqrt2},0,\frac{-1}{\sqrt2}

That is,

cos\alpha=\frac{1}{\sqrt2}

cos\beta=0

cos\gama=\frac{-1}{\sqrt2}

\text{where }\alpha,\beta,\gamma\text{ are direction angles of }\vec{r}

\implies\:\alpha=45^{\circ}

\alpha=90^{\circ}

\gamma=135^{\circ}

Answered by sushiladevi4418
0

Answer:

Direction cosines are (\frac{1}{\sqrt2},0,\fac{-1}{\sqrt2})

Direction angles are  45^{\circ},90^{\circ},135^{\circ}

Step-by-step explanation:

As per the question,

We know that direction cosines also called directional cosines , of a vector are the angles between the vector and the coordinate axes.

Since the given coordinate in the question are (1,0,-1). It represents a vector that is vector \vec{a}.

So,

\text{Let }\vec{a}= 1\hat{i}+0\hat{j}+(-1)\hat{k}

\text{Let }\vec{a}= \hat{i}+0\hat{j}-\hat{k}

Then,  the magnitude of vector \vec{a} is given by,

|\vec{a}|=\sqrt{1^2+0^2+(-1)^2}

|\vec{a}|=\sqrt{1+1}

|\vec{a}|=\sqrt{2}

Therefore direction cosine is written as,

\text{Direction cosines of }\vec{a}\:{ are }\:\frac{1}{\sqrt2},0,\frac{-1}{\sqrt2}.

Now,

Let α , β , γ are the direction angle vector \vec{a}.

That is,

cos\alpha=\frac{1}{\sqrt2}

 \alpha =45^{\circ}

cos\beta=0

 \beta=90^{\circ}

cos\gama=\frac{-1}{\sqrt2}

γ \gama=135^{\circ}

Hence,

Direction cosines are (\frac{1}{\sqrt2},0,\fac{-1{\sqrt2})

Direction angles are  45^{\circ},90^{\circ},135^{\circ}.

Similar questions
Math, 1 year ago