Math, asked by coolmukil8460, 1 year ago

 \int\limits^3_1 dx/x²(x+1) ,Evaluate it.

Answers

Answered by ujalasingh385
0

Answer:

log\frac{2}{3}-\frac{4}{3}

Step-by-step explanation:

\int\limits^3_1 {\frac{1}{x^{2}(x+1)}} \, dx

\textrm{using partial fractions}

\frac{A}{x+1}+\frac{Bx+C}{x^{2}}\textrm{where A,B,C are constant}

\textrm{Taking L.C.M we get}

\frac{(A+B)x^{2}+(B+C)x+C}{x^{2}x(x+1)}

\textrm{on solving we get A=1,B=-1,C=1}

\int\limits^3_1 {\frac{1}{(x+1)}} \, dx+\int\limits^3_1 {\frac{-x+1}{x^{2}}} \, dx

\int\limits^3_1 {\frac{1}{(x+1)}} \, dx-\int\limits^3_1 {\frac{x}{x^{2}}} \, dx+\int\limits^3_1 {\frac{1}{x^{2}}} \, dx

[tex]\int\limits^3_1 {\frac{1}{(x+1)}} \, dx-\int\limits^3_1 {\frac{1}{x}} \, dx+\int\limits^3_1 {\frac{1}{x^{2}}} \, dx

\textrm{applying thr formula of integrals,we get}

\left \{ {{x=3} \atop {x=1}} \right.log(x+1)-log(x)-\frac{1}{x}+c

\textrm{on applying the upper and lower limits we get,}

log\frac{2}{3}-\frac{4}{3}

Similar questions
Math, 1 year ago
Math, 1 year ago