Math, asked by rkbehal1112, 1 year ago

 \int\limits^1_0 x(1-x)³/² dx=4/35 ,Prove it.

Answers

Answered by MaheswariS
0

Answer:

\bf\:\int\limits^1_0\:x(1-x)^{\frac{3}{2}}\:dx=\frac{4}{35}

Step-by-step explanation:

Let\:I=\int\limits^1_0\:x(1-x)^{\frac{3}{2}}\:dx

using the property

\boxed{\int\limits^a_0\:f(x)\:dx=\int\limits^a_0\:f(a-x)\:dx}

\implies\:I=\int\limits^1_0\:(1-x)(1-(1-x))^{\frac{3}{2}}\:dx

\implies\:I=\int\limits^1_0\:(1-x)x^{\frac{3}{2}}\:dx

\implies\:I=\int\limits^1_0\:(x^{\frac{3}{2}}-x^{\frac{5}{2}})\:dx

\implies\:I=[\frac{x^{\frac{5}{2}}}{\frac{5}{2}}}-\frac{x^{\frac{7}{2}}}{\frac{7}{2}}}]\limits^1_0

\implies\:I=2[\frac{x^{\frac{5}{2}}}{5}-\frac{x^{\frac{7}{2}}}{7}]^1_0

\implies\:I=2[\frac{1^{\frac{5}{2}}}{5}-\frac{1^{\frac{7}{2}}}{7}]-2[0]

\implies\:I=2[\frac{1}{5}-\frac{1}{7}]

\implies\:I=2[\frac{7-5}{35}]

\implies\:I=2[\frac{2}{35}]

\therefore\boxed{\bf\:I=\frac{4}{35}}

Similar questions
Math, 1 year ago