Math, asked by AkashB3569, 1 year ago

 \int\limits^2_1 1/x(1+x²) dx ,Evaluate it.

Answers

Answered by jitumahi89
0

Answer:

The result is:

log(2)-\dfrac{1}{2}[log(5)-log(2)]

Step-by-step explanation:

Given equation is:

\displaystyle\int_1^2\dfrac{1}{x(1+x^2)}dx

Here we are using partial fraction method:

\dfrac{1}{x(1+x^2)}=\dfrac{A}{x}+\dfrac{Bx+C}{1+x^2}

\dfrac{1}{x(1+x^2)}=\dfrac{A(1+x^2)+(Bx+C)x}{x(1+x^2)}

1=A+x^2A+x^2B+xC

Comparing the coefficients of x^2 we get:

x^2A+x^2B=0

A+B=0\,\,\,\,\,eqn(1)

Comparing the coefficients of x we get:

Cx=0

C=0

And by Comparing the coefficients of constant terms we get:

A=1

Substituting the value of A in eqn(1) we get:

B=-1

Therefore integrating:

\displaystyle\int _1^2\dfrac{1}{x(1+x^2)}dx=\displaystyle\int _1^2\dfrac{1}{x}dx+\displaystyle\int _1^2\dfrac{-1x+0}{1+x^2}dx

                         =\displaystyle\int _1^2\dfrac{1}{x}dx-\displaystyle\int _1^2\dfrac{x}{1+x^2}dx

Let:

1+x^2=z\\2x\,dx=dz\\x\,dx=\dfrac{dz}{2}

Substituting the values limit we get:

Lower limit:

When x=1

z=2

When x=2

z=(2)^2+1\\z=5

Hence:

=\displaystyle\int _1^2\dfrac{1}{x}dx-\displaystyle\int _2^5\dfrac{1}{z}\cdot \dfrac{dz}{2}

=[log(x)]_1^2-\dfrac{1}{2}[log{z}]_2^5

=log(2)-log(1)-\dfrac{1}{2}[log(5)-log(2)]

=log(2)-\dfrac{1}{2}[log(5)-log(2)]

Similar questions
Math, 1 year ago