Math, asked by jayanthkumar660, 1 month ago

1 1 1 If xyz = 1 (x, y, * 0), then xy 1+y+z²³1+2+x²² 1+x+y equals​

Attachments:

Answers

Answered by barick634
0

Answer:

Given:- xyz=1

To prove:- (1+x+y  

−1

)  

−1

+(1+y+z  

−1

)  

−1

+(1+z+x  

−1

)  

−1

=1

Proof:-

Taking L.H.S.-

(1+x+y  

−1

)  

−1

+(1+y+z  

−1

)  

−1

+(1+z+x  

−1

)  

−1

 

=(1+x+xz)  

−1

+(1+y+xy)  

−1

+(1+z+yz)  

−1

 

=(1+x+xz)  

−1

+(xyz+y+xy)  

−1

+(1+z+yz)  

−1

 

=(1+x+xz)  

−1

+y  

−1

(1+x+xz)  

−1

+(1+z+yz)  

−1

 

=(1+x+xz)  

−1

(1+y  

−1

)+(1+z+yz)  

−1

 

=(xyz+x+xz)  

−1

(1+y  

−1

)+(1+z+yz)  

−1

 

=x  

−1

(1+z+yz)  

−1

(1+y  

−1

)+(1+z+yz)  

−1

 

=(1+z+yz)  

−1

(x  

−1

+(xy)  

−1

)+(1+z+yz)  

−1

 

=(1+z+yz)  

−1

(yz+z+1)

=  

1+z+yz

1+z+yz

 

=1

Hope It Helped You...

Mark As Brainlest Answer...

Similar questions