Math, asked by srivastavakashish221, 1 year ago

1-1/2+2-1/2+3-1/2+4-1/2+5-1/2+6-1/2+7-1/2+8-1/2+9-1/2+10-1/2 write the answer in standard form

Answers

Answered by AbhijithPrakash
17

Answer:

$1-\dfrac{1}{2}+2-\dfrac{1}{2}+3-\dfrac{1}{2}+4-\dfrac{1}{2}+5-\dfrac{1}{2}+6-\dfrac{1}{2}+7-\dfrac{1}{2}+8-\dfrac{1}{2}+9-\dfrac{1}{2}+10-\dfrac{1}{2}=5\times 10^1$

Step-by-step explanation:

$1-\dfrac{1}{2}+2-\dfrac{1}{2}+3-\dfrac{1}{2}+4-\dfrac{1}{2}+5-\dfrac{1}{2}+6-\dfrac{1}{2}+7-\dfrac{1}{2}+8-\dfrac{1}{2}+9-\dfrac{1}{2}+10-\dfrac{1}{2}$

\gray{\mathrm{Group\:like\:terms}}

$=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}+1+2+3+4+5+6+7+8+9+10$

\black{\mathrm{Combine\:the\:fractions\:}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}}

\gray{\mathrm{Apply\:rule}\:\dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}}

=\dfrac{-1-1-1-1-1-1-1-1-1-1}{2}

\gray{\mathrm{Subtract\:the\:numbers:}\:-1-1-1-1-1-1-1-1-1-1=-10}

=\dfrac{-10}{2}

\gray{\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}}

=-\dfrac{10}{2}

\gray{\mathrm{Divide\:the\:numbers:}\:\dfrac{10}{2}=5}

=-5

$=-5+1+2+3+4+5+6+7+8+9+10$

\gray{\mathrm{Add/Subtract\:the\:numbers:}\:-5+1+2+3+4+5+6+7+8+9+10=50}

=50

=5.0\times10^1\quad\mathrm{or}\quad0.50\times10^2

Answered by Anonymous
20

Hey there

refer to attachment

Attachments:
Similar questions