Math, asked by roy564336, 1 year ago


1/1+a^m-n + 1/1+a^n-m

Answers

Answered by ihrishi
9

Answer:

 \frac{1}{1 +  {a}^{m - n } }  +  \frac{1}{1 +  {a}^{n - m } }  \\ \\ =  \frac{1 +  {a}^{n - m }  +1 + {a}^{m - n } }{(1 +  {a}^{m - n })(1 +  {a}^{n - m})}  \\ \\ =  \frac{2 +  {a}^{m - n } +  {a}^{n - m }}{1 + {a}^{n - m } +   {a}^{m - n } + {a}^{m - n } \times {a}^{n - m }  }  \\ \\ =  \frac{2 +  {a}^{m - n } +  {a}^{n - m }}{1 + {a}^{n - m } +   {a}^{m - n } + {a}^{m - n  + n - m} }   \\ \\=  \frac{2 +  {a}^{m - n } +  {a}^{n - m }}{1 + {a}^{n - m } +   {a}^{m - n } + {a}^{0} }   \\\\ =  \frac{2 +  {a}^{m - n } +  {a}^{n - m }}{1 + {a}^{n - m } +   {a}^{m - n } + 1 }  \\ \\=  \frac{2 +  {a}^{m - n } +  {a}^{n - m }}{2 + {a}^{m - n } +   {a}^{n - m } } \\ \\  = 1  \\ \\Thus\\  \\ \fbox{\therefore  \frac{1}{1 +  {a}^{m - n } }  +  \frac{1}{1 +  {a}^{n - m } }  = 1}

Similar questions