Math, asked by shadab49271998, 1 year ago

А = (1,1) B=(-2,7) C=(3,-3)
find 1/AB+1/BC+1/CA=?​

Answers

Answered by erinna
11

The value of \dfrac{1}{AB}+\dfrac{1}{BC}+\dfrac{1}{CA} is \frac{31\sqrt{5}}{150}.

Step-by-step explanation:

The given points are А = (1,1) B=(-2,7) C=(3,-3).

Distance formula:

Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

Using distance formula we get

AB=\sqrt{\left(-2-1\right)^2+\left(7-1\right)^2}=3\sqrt{5}

BC=\sqrt{\left(3-\left(-2\right)\right)^2+\left(-3-7\right)^2}=5\sqrt{5}

CA=\sqrt{\left(1-3\right)^2+\left(1-\left(-3\right)\right)^2}=2\sqrt{5}

We need to find the value of \dfrac{1}{AB}+\dfrac{1}{BC}+\dfrac{1}{CA}.

\dfrac{1}{3\sqrt{5}}+\dfrac{1}{5\sqrt{5}}+\dfrac{1}{2\sqrt{5}}

\frac{10}{30\sqrt{5}}+\frac{6}{30\sqrt{5}}+\frac{15}{30\sqrt{5}}

\frac{10+6+15}{30\sqrt{5}}

\frac{31}{30\sqrt{5}}

After rationalization we get

\frac{31\sqrt{5}}{150}

Therefore, the value of \dfrac{1}{AB}+\dfrac{1}{BC}+\dfrac{1}{CA} is \frac{31\sqrt{5}}{150}.

#Learn more

Find the distance between the points (3,4) and (-3,-4) by using distance between two points formula

https://brainly.in/question/14099533

Rationalize the denominator

https://brainly.in/question/4110570

Similar questions