Math, asked by Harshvardhan999, 1 year ago

1/1+cos A +1/1-cos A=2cosec^2A

Answers

Answered by sumo2
5
1/(1+cosA)+1/(1-cosA)=2/(1-cos^2A)=2/sin^2A=2cosec^2A
Answered by TheCommando
15

Question:

 \dfrac{1}{1+cosA} + \dfrac{1}{1-cosA} = 2{cosec}^{2}A

Solution:

LHS =  \dfrac{1}{1+cosA} + \dfrac{1}{1-cosA}

RHS =  2{cosec}^{2}A

LHS =  \dfrac{1}{1+cosA} + \dfrac{1}{1-cosA}

 = \dfrac{1- cosA + 1 + cosA}{(1+cosA)(1-cosA)}

 = \dfrac{2}{1 - {cos}^{2}A}

= \dfrac{2}{{sin}^{2}A}

= 2{cosec}^{2}A = RHS

Hence, proved.

☆Identities used☆

 a^{2} - b^{2} = (a+b)(a-b)

 {sin}^{2}\theta + {cos}^{2}\theta = 1

 cosec\theta = \dfrac{1}{sin\theta}

Similar questions