Math, asked by heanishmaghnani8759, 11 months ago

1/1+cos theta + 1/1-cos theta =2 cosec sq theta

Answers

Answered by tahseen619
2

 \bold{\text{To Prove:}}

 \dfrac{1}{1 +  \cos \theta } +  \dfrac{1}{1  -   \cos \theta } = 2 \cosec {}^{2}  \theta

\text{Solution:}

L.H.S

 \frac{1}{1 +  \cos \theta } +  \frac{1}{1  -   \cos \theta }   \\  \\  =   \frac{1  -  \cos \theta + 1 +  \cos \theta  }{(1 +  \cos \theta )(1  -   \cos \theta) } \\  \\  =  \frac{1  -   \cancel{\cos \theta} + 1 +   \cancel{\cos \theta } }{1 {}^{2}  - \cos  {}^{2} \theta  } \\  \\   =  \frac{2}{1 -  { \cos {}^{2}  \theta}^{} }  \\  \\  =  \frac{2}{ \sin {}^{2}  \theta }  \\  \\  = 2 \cosec {}^{2}  \theta \\  \\  \therefore \: L.H.S = R.H.S  \:  \: [Proved]

 \bold{\text{Using Formula}}

(a + b)(a - b) = a² - b²

 \boxed{ \bold{ \text{Some important trigonometry Rules: }}}

sinø . cosecø = 1

cosø . secø = 1

tanø . cotø = 1

sin²ø + cos²ø = 1

cosec²ø - cot² = 1

sec²ø - tan²ø = 1

Similar questions