Math, asked by princesaroj977, 8 months ago

1+1/tan^2A * 1+1/cot^2A​

Answers

Answered by brainly1947
1

Answer:4

Step-by-step explanation:

(1+1/tan^2A) * (1+1/cot^2A)

=(tan^2A+1/tan^2A)*(cot^2A+1/cot^2A)

=[(tan^2A+1)*(cot^2A+1)] / (tan^2A/cot^2A)

= [(tan^2A+1)*(cot^2A+1)]  / 1

            {since tanA =1/cotA,=>tan^2A=1/cot^2A,=>tan^2A*cot^2A=1}

= tan^2A*cot^2A + tan^2A + cot^2A + 1

=1 + Sin^2A/Cos^2A + Cos^2A/Sin^2A+1 {sinA/cosA=tanA,cosA/sinA=cotA}

=2 +( Sin^2A*Cos^2A+Cos^2A*Sin^2A)/Sin^2A*Cos^2A

= 2 + (2Sin^2A*Cos^2A)/Sin^2A*Cos^2A

=2+2

=4

Hope this helps!!

Similar questions