Math, asked by ravigajbheye9767, 9 days ago

[1+1/tan^x][1+1/cot^x]=1/sin^x-sin^x​

Answers

Answered by mathdude500
3

Correct Statement :-

 \sf \: Prove\:that\:\bigg(1 + \dfrac{1}{ {tan}^{2} x}\bigg)\bigg(1 + \dfrac{1}{ {cot}^{2}x}\bigg) = \dfrac{1}{ {sin}^{2}x -  {sin}^{4}x}

Identities Used :-

\boxed{\bf \:  {sin}^{2}x +  {cos}^{2}x = 1}

\boxed{\bf \:{cos}^{2}x = 1 - {sin}^{2}x}

\boxed{ \bf \:tanx = \dfrac{sinx}{cosx}}

\boxed{ \bf \:cotx = \dfrac{cosx}{sinx}}

Solution :-

Consider,

 \sf \:\bigg(1 + \dfrac{1}{ {tan}^{2} x}\bigg)\bigg(1 + \dfrac{1}{ {cot}^{2}x}\bigg)

 \sf \: =  \:  \: \bigg(1 + \dfrac{ {cos}^{2}x }{ {sin}^{2} x}\bigg)\bigg(1 + \dfrac{ {sin}^{2}x }{ {cos}^{2}x}\bigg)

 \sf \: =  \:  \: \bigg(\dfrac{{sin}^{2}x +  {cos}^{2}x}{ {sin}^{2}x}\bigg)\bigg(\dfrac{{cos}^{2}x+{sin}^{2}x }{ {cos}^{2}x}\bigg)

 \sf \:  =  \:  \: \dfrac{1}{{sin}^{2}x}  \times\dfrac{1}{{cos}^{2}x}

 \sf \:  =  \:  \: \dfrac{1}{{sin}^{2}x {cos}^{2} x}

 \sf \:  =  \:  \: \dfrac{1}{{sin}^{2}x (1 - {sin}^{2} x)}

 \sf \:  =  \:  \: \dfrac{1}{{sin}^{2}x  - {sin}^{4} x}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by TheUntrustworthy
3

lets \: Consider, \\ \sf \:\bigg(1 + \dfrac{1}{ {tan}^{2} x}\bigg)\bigg(1 + \dfrac{1}{ {cot}^{2}x}\bigg) \\ \sf \: = \: \: \bigg(1 + \dfrac{ {cos}^{2}x }{ {sin}^{2} x}\bigg)\bigg(1 + \dfrac{ {sin}^{2}x }{ {cos}^{2}x}\bigg)\\  \\ \sf \: = \: \: \bigg(\dfrac{{sin}^{2}x + {cos}^{2}x}{ {sin}^{2}x}\bigg)\bigg(\dfrac{{cos}^{2}x+{sin}^{2}x }{ {cos}^{2}x}\bigg)\\  \\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x} \times\dfrac{1}{{cos}^{2}x}\\  \\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x {cos}^{2} x} \\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x (1 - {sin}^{2} x)}\\ \sf \: = \: \: \dfrac{1}{{sin}^{2}x - {sin}^{4} x}

 { \red{ \bf{   Information \: related \: to \:Trigonometry:}}}

 { \green{ \bf{ sin θ = Opposite Side/Hypotenuse  }}}

 { \green{ \bf{  cos θ = Adjacent Side/Hypotenuse }}}

 { \green{ \bf{tan θ = Opposite Side/Adjacent Side   }}}

 { \green{ \bf{sec θ = Hypotenuse/Adjacent Side   }}}

 { \green{ \bf{  cosec θ = Hypotenuse/Opposite Side }}}

 { \green{ \bf{  cot θ = Adjacent Side/Opposite Side }}}

 { \red{ \bf{Their \: reciprocal \: Identities:   }}}

 { \green{ \bf{  cosec θ = 1/sin θ }}}

 { \green{ \bf{ sec θ = 1/cos θ  }}}

 { \green{ \bf{  cot θ = 1/tan θ }}}

 { \green{ \bf{sin θ = 1/cosec θ   }}}

 { \green{ \bf{ cos θ = 1/sec θ  }}}

 { \green{ \bf{   tan θ = 1/cot θ}}}

 { \red{ \bf{ Their \: co-function \: Identities:  }}}

 { \green{ \bf{  sin (90°−x) = cos x }}}

 { \green{ \bf{cos (90°−x) = sin x   }}}

 { \green{ \bf{ tan (90°−x) = cot x  }}}

 { \green{ \bf{  cot (90°−x) = tan x }}}

 { \green{ \bf{ sec (90°−x) = cosec x  }}}

 { \green{ \bf{ cosec (90°−x) = sec x  }}}

 { \red{ \bf{ Their \: fundamental \: trigonometric \: identities:  }}}

 { \green{ \bf{  sin²θ + cos²θ = 1 }}}

 { \green{ \bf{  sec²θ - tan²θ = 1 }}}

 { \green{ \bf{ cosec²θ - cot²θ = 1  }}}

Similar questions