Math, asked by vishi3k, 6 days ago

1/(1 + x ^ a + x ^ b) + 1/(1 + x ^ (- a) + x ^ (b - a)) + 1/(1 + x ^ (- b) + x ^ (a - b)) = 1 proof​

Answers

Answered by ansarizara478
3

Answer:

Prove-

(i)

(i)

[

x

1

a−b

]

1

a−c

[

x

1

b−c

]

1

b−a

[

x

1

c−a

]

1

c−b

=1

[x1a-b]1a-c⋅[x1b-c]1b-a⋅[x1c-a]1c-b=1

(ii)

(ii)

(

x

a−b

)

a+b

(

x

b−c

)

b+c

(

x

c−a

)

c+a

=1

(xa-b)a+b⋅(xb-c)b+c⋅(xc-a)c+a=1

<br>

(iii)

(iii)

[{

x

a(a−b)

x

a(a+b)

}÷{

x

b(b−a)

x

b(b+a)

}]

a+b

=1

[{xa(a-b)xa(a+b)}÷{xb(b-a)xb(b+a)}]a+b=1

(iv)

(iv)

(

a

x+1

a

y+1

)

x+y

(

a

y+2

a

z+2

)

y+z

(

a

  • z+3

a

x+3

)

z+x

=1

(ax+1ay+1)x+y⋅(ay+2az+2)y+z⋅(az+3ax+3)z+x=1

Similar questions