1+2+3+4+5+6+7+-------=? make it by ramanujan infinity sum.
Answers
Answered by
1
Many summation methods are used in mathematics to assign numerical values even to a divergent series. In particular, the methods of zeta function regularization and Ramanujan summation assign the series a value of − 1/12, which is expressed by a famous formula:[2]
{\displaystyle 1+2+3+4+\cdots =-{\frac {1}{12}},}
where the left-hand side has to be interpreted as being the value obtained by using one of the aforementioned summation methods and not as the sum of an infinite series in its usual meaning.
{\displaystyle 1+2+3+4+\cdots =-{\frac {1}{12}},}
where the left-hand side has to be interpreted as being the value obtained by using one of the aforementioned summation methods and not as the sum of an infinite series in its usual meaning.
Similar questions