1,2,3,4 are the zeroes of x^4+ax³+6x²+cx+d=0 then the value of a is ..............(^ is denoted for power of ) *
Answers
Answered by
0
Answer:
a=−x^4−cx−6x²−d/x³
Step-by-step explanation:
Let's solve for a.
x4+ax3+6x2+cx+d=0
Step 1: Add -x^4 to both sides.
ax3+x4+cx+6x2+d+−x4=0+−x4
ax3+cx+6x2+d=−x4
Step 2: Add -cx to both sides.
ax3+cx+6x2+d+−cx=−x4+−cx
ax3+6x2+d=−x4−cx
Step 3: Add -6x^2 to both sides.
ax3+6x2+d+−6x2=−x4−cx+−6x2
ax3+d=−x4−cx−6x2
Step 4: Add -d to both sides.
ax3+d+−d=−x4−cx−6x2+−d
ax3=−x4−cx−6x2−d
Step 5: Divide both sides by x^3.
ax³/x³=−x^4−cx−6x²−d/x³
a=−x^4−cx−6x²−d/x³
Answer:
a=−x^4−cx−6x²−d/x³
Similar questions