Math, asked by rohitSriSai, 8 months ago

1,2,3,4 are the zeroes of x^4+ax³+6x²+cx+d=0 then the value of a is ..............(^ is denoted for power of ) *​

Answers

Answered by pukultanvi4444
0

Answer:

a=−x^4−cx−6x²−d/x³

Step-by-step explanation:

Let's solve for a.

x4+ax3+6x2+cx+d=0

Step 1: Add -x^4 to both sides.

ax3+x4+cx+6x2+d+−x4=0+−x4

ax3+cx+6x2+d=−x4

Step 2: Add -cx to both sides.

ax3+cx+6x2+d+−cx=−x4+−cx

ax3+6x2+d=−x4−cx

Step 3: Add -6x^2 to both sides.

ax3+6x2+d+−6x2=−x4−cx+−6x2

ax3+d=−x4−cx−6x2

Step 4: Add -d to both sides.

ax3+d+−d=−x4−cx−6x2+−d

ax3=−x4−cx−6x2−d

Step 5: Divide both sides by x^3.

ax³/x³=−x^4−cx−6x²−d/x³

a=−x^4−cx−6x²−d/x³

Answer:

a=−x^4−cx−6x²−d/x³

Similar questions